Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Alice Lacaze-Masmonteil, University of Ottawa

July 16, 2024

KORKARYKERKER POLO

Hamiltonian decomposable

Definition

A graph (directed graph) is hamiltonian decomposable if it admits a decomposition into (directed) hamiltonian cycles.

KELK KØLK VELKEN EL 1990

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \nmid H)$ if and only if...

KORKARYKERKER POLO

Definition

The **wreath product** of G and H, denoted $G \nmid H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if $x = u$ and $(y, v) \in A(H)$, or...

KORKAR KERKER ST VOOR

Definition

The **wreath product** of G and H, denoted $G \nmid H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if $x = u$ and $(y, v) \in A(H)$ or $(x, u) \in A(G)$.

KOD KAR KED KED E YOUN

Definition

The **wreath product** of G and H, denoted $G \nmid H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if $x = u$ and $(y, v) \in A(H)$ or $(x, u) \in A(G)$.

KOD KAR KED KED E YOUN

Main problem

Question: Given two hamiltonian decomposable (directed) graphs G and H, is $G \wr H$ also hamiltonian decomposable?

KELK KØLK VELKEN EL 1990

Main problem

Question: Given two hamiltonian decomposable (directed) graphs G and H, is $G \wr H$ also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then $G \nmid H$ is also hamiltonian decomposable.

KORKAR KERKER ST VOOR

Main problem

Question: Given two hamiltonian decomposable (directed) graphs G and H, is $G \wr H$ also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then $G \wr H$ is also hamiltonian decomposable.

Theorem (Ng, 1998)

If G and H are hamiltonian decomposable digraphs, $|V(G)|$ is odd, and $|V(H)| > 2$, then G \wr H is also hamiltonian decomposable.

KORKAR KERKER ST VOOR

Main question refined

Question: Given two hamiltonian decomposable digraphs graphs G and H, such that $|V(G)|$ is even, is G \wr H also hamiltonian decomposable?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Reduction

Proposition (Ng, 1998)

Let G and H be hamiltonian decomposable directed graphs such that $|V(G)| = n$ and $|V(H)| = m$. If

KORKAR KERKER SAGA

 $\vec{\Gamma}$ \vec{C}_n *i* H is hamiltonian decomposable,

 $\mathbf 2$ and $\vec{\mathcal{C}}_n \wr \overline{\mathcal{K}}_m$ are hamiltonian decomposable,

then $G \wr H$ is hamiltonian decomposable.

Note that $\vec{\mathcal{C}}_n$ denotes the directed cycle on n vertices.

Lemma (Ng, 1998)

If m \geqslant 3, then $\vec{C}_n \wr \overline{K}_m$ is hamiltonian decomposable.

KORKARYKERKER POLO

Lemma (Ng, 1998)

If m \geqslant 3, then $\vec{C}_n \wr \overline{K}_m$ is hamiltonian decomposable.

 $F_0 = (id, id, (0, 1, 2)).$

KORKARYKERKER POLO

Lemma (Ng, 1998)

If m \geqslant 3, then $\vec{\mathcal{C}}_n \wr \overline{\mathcal{K}}_m$ is hamiltonian decomposable.

Lemma (Ng, 1998)

If m \geqslant 3, then $\vec{C}_n \wr \overline{K}_m$ is hamiltonian decomposable.

2-factorization of $\vec{\mathcal{C}}_n \wr \overline{\mathcal{K}}_m$

Each 2-factorization of $\vec{\mathcal{C}}_n \wr \overline{\mathcal{K}}_m$ can be described as a set of m *n*-tuples of permutations from S_m :

KID KA KERKER E VOOR

$$
\mathcal{F} = \left\{ \begin{array}{cccc} (\mu_{(0,0)}, & \mu_{(0,1)}, & \dots, & \mu_{(0,n-1)}); \\ (\mu_{(1,0)}, & \mu_{(1,1)}, & \dots, & \mu_{(1,n-1)}); \\ & \vdots & & \\ (\mu_{(m-1,0)}, & \mu_{(m-1,1)}, & \dots, & \mu_{(m-1,n-1)}). \end{array} \right\}
$$

Decomposition families

Definition

Let $\mathcal{T} = {\mu_{(0,j)}, \mu_{(1,j)}, \ldots, \mu_{(m-1,j)}}$ be a set of *m* permutations from the symmetric group S_m . The set T is a **decomposition** family of order m if $\mu_{(k_1,j)}\mu_{(k_2}^{-1}$ $\frac{1}{(k_2,j)}$ is a derangement for all $\mu_{(k_1,j)} \neq \mu_{(k_2,j)}.$

KELK KØLK VELKEN EL 1990

Example:

$$
\mathcal{F} = \left\{ \begin{array}{c} (id, \quad id, \quad (0,1,2)) \\ ((0,1,2), \quad (0,1,2), \quad (0,2,1)) \\ ((0,2,1), \quad (0,2,1), \quad id) \end{array} \right\}
$$

Hamiltonian n-tuple

Definition

Let
$$
\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m
$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a **hamiltonian** *n*-tuple if $\tau_i = \mu_{(i,0)}\mu_{(i,1)}\ldots \mu_{(i,n-1)}$ is a permutation on a single cycle.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Example:

$$
F_0 = (id, id, (0, 1, 2)) \Rightarrow \tau_0 = (0, 1, 2).
$$

Hamiltonian n-tuple

Definition

Let
$$
\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m
$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a **hamiltonian** *n*-tuple if $\tau_i = \mu_{(i,0)}\mu_{(i,1)}\ldots \mu_{(i,n-1)}$ is a permutation on a single cycle.

Example:

$$
F_0 = (id, id, (0, 1, 2)) \Rightarrow \tau_0 = (0, 1, 2);
$$

\n
$$
F_1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1)) \Rightarrow \tau_1 = (0, 1, 2)(0, 1, 2)(0, 2, 1)
$$

\n
$$
= (0, 1, 2).
$$

Hamiltonian n-tuple

Definition

Let
$$
\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m
$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a **hamiltonian** *n*-tuple if $\tau_i = \mu_{(i,0)} \mu_{(i,1)} \ldots \mu_{(i,n-1)}$ is a permutation on a single cycle

is a permutation on a single cycle.

Example:

$$
F_0 = (id, id, (0, 1, 2)) \Rightarrow \tau_0 = (0, 1, 2);
$$

\n
$$
F_1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1)) \Rightarrow \tau_1 = (0, 1, 2)(0, 1, 2)(0, 2, 1)
$$

\n
$$
= (0, 1, 2);
$$

\n
$$
F_2 = ((0, 2, 1), (0, 2, 1), id) \Rightarrow \tau_2 = (0, 2, 1)(0, 2, 1) = (0, 1, 2).
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

In summary

The digraph $\vec{\mathcal{C}}_n \wr \overline{\mathcal{K}}_m$ is hamiltonian decomposable if we have

$$
\begin{array}{ll}\n(\mu_{0,0}, & \mu_{0,1}, & \dots, & \mu_{0,n-1}); \\
(\mu_{1,0}, & \mu_{1,1}, & \dots, & \mu_{1,n-1}); \\
\vdots & \vdots & \vdots & \vdots \\
(\mu_{m-1,0}, & \mu_{m-1,1}, & \dots, & \mu_{m-1,n-1}).\n\end{array}
$$
\n
$$
\left.\begin{array}{c}\n\text{Hamiltonian } n\text{-tuples} \\
\vdots & \vdots \\
\mu_{m-1,n-1} & \ldots & \mu_{m-1,n-1}\n\end{array}\right\}
$$

where $\{\mu_{(0,i)},\mu_{(1,i)},\dots \mu_{(m-1,i)}\}$ is a decomposition family of order m for each $i \in \mathbb{Z}_n$.

KID KØD KED KED E 1990

Hamiltonian decomposition of $\vec{\mathcal{C}}_n \wr \mathcal{H}$

We will take a similar approach for the digraph $\vec{\mathcal{C}}_n \wr \mathcal{H}$:

$$
\begin{array}{ll}\n(\mu_{0,0}, & \mu_{0,1}, & \ldots, & \mu_{0,n-1}); \\
(\mu_{1,0}, & \mu_{1,1}, & \ldots, & \mu_{1,n-1}); \\
\vdots & \vdots & \vdots & \vdots \\
(\mu_{m-1,0}, & \mu_{m-1,1}, & \ldots, & \mu_{m-1,n-1}).\n\end{array}
$$
\n*m n*-tuples such that...

where $\{\mu_{(0,i)},\mu_{(1,i)},\dots \mu_{(m-1,i)}\}$ is a decomposition family of order m for each $i \in \mathbb{Z}_n$.

KID KA KERKER E VOOR

Truncation of a permutation

Definition

Let $\mu \in S_m$ be such that $(m-1)^{\mu} \neq m-1$. The **truncation** of μ , denoted $\hat{\mu}$, is the permutation $\hat{\mu} = \mu (m-1, (m-1)^{\mu}).$

KORKAR KERKER SAGA

Example: $\mu = (0, 1, 2, 3, 4, 5, 6, 7) \in S_8$.

Truncation of a permutation

Definition

Let $\mu \in S_m$ be such that $(m-1)^{\mu} \neq m-1$. The **truncation** of μ , denoted $\hat{\mu}$, is the permutation $\hat{\mu} = \mu (m-1, (m-1)^{\mu}).$

KORKAR KERKER ST VOOR

Example: $\mu = (0, 1, 2, 3, 4, 5, 6, 7) \in S_8$;

 $\hat{\mu} = (0, 1, 2, 3, 4, 5, 6, 7)(7, 0).$

Truncation of a permutation

Definition

Let $\mu \in S_m$ be such that $(m-1)^{\mu} \neq m-1$. The **truncation** of μ , denoted $\hat{\mu}$, is the permutation $\hat{\mu} = \mu (m-1, (m-1)^{\mu}).$

KORKAR KERKER ST VOOR

Example: $\mu = (0, 1, 2, 3, 4, 5, 6, 7) \in S_8$;

 $\hat{\mu} = (0, 1, 2, 3, 4, 5, 6, 7)(7, 0);$

 $\hat{\mu} = (0, 1, 2, 3, 4, 5, 6)$ (7).

Truncated hamiltonian n-tuple

Definition

Let $\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m$. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a truncated hamiltonian *n*-tuple if $\sigma_i = \hat{\mu}_{(i,0)} \hat{\mu}_{(i,1)} \dots \hat{\mu}_{(i,n-1)}$ is a permutation with two cycles in its disjoint cycle notation.

KORKAR KERKER ST VOOR

Example: $((0, 2), (0, 2), (0, 1, 2))$, where $(0, 2), (0, 1, 2) \in S_3$

Truncated hamiltonian n-tuple

Definition

Let
$$
\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m
$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a **truncated hamiltonian** *n*-tuple if $\sigma_i = \hat{\mu}_{(i,0)} \hat{\mu}_{(i,1)} \ldots \hat{\mu}_{(i,n-1)}$ is a permutation with two cycles in its disjoint cycle notation

is a permutation with two cycles in its disjoint cycle notation.

KORKARYKERKER POLO

Example: $((0, 2), (0, 2), (0, 1, 2))$; $\sigma = id$ id $(0, 1)(2)$.

Truncated hamiltonian n-tuple

Definition

Let
$$
\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m
$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a **truncated hamiltonian** *n*-tuple if $\sigma_i = \hat{\mu}_{(i,0)} \hat{\mu}_{(i,1)} \cdots \hat{\mu}_{(i,n-1)}$

is a permutation with two cycles in its disjoint cycle notation.

Example: $((0, 2), (0, 2), (0, 1, 2))$;

$$
\sigma = id \text{ id } (0,1)(2);
$$

$$
\sigma = (0,1)(2).
$$

KORKARYKERKER POLO

General Approach

Let H be a digraph on m vertices that admits a decomposition into c directed hamiltonian cycles ($1 \leqslant c \leqslant m-2).$ The digraph $\vec{\mathcal{C}}_n \wr \mathcal{H}$ is hamiltonian decomposable if we have:

$$
\begin{array}{ll}\n(\mu_{0,0}, & \mu_{0,1}, & \ldots, & \mu_{0,n-1}); \\
(\mu_{1,0}, & \mu_{1,1}, & \ldots, & \mu_{1,n-1}); \\
& \vdots \\
(\mu_{c-1,0}, & \mu_{c-1,1}, & \ldots, & \mu_{c-1,n-1}); \\
& (\mu_{c,0}, & \mu_{c,1}, & \ldots, & \mu_{c,n-1}); \\
& \vdots & & \vdots \\
(\mu_{m-1,0}, & \mu_{m-1,1}, & \ldots, & \mu_{m-1,n-1})\n\end{array}\n\right\} \text{ or truncated hamiltonian } n \text{-tuples}
$$
\n
$$
\begin{array}{ll}\n(\mu_{m-1,0}, & \mu_{m-1,1}, & \ldots, & \mu_{m-1,n-1})\n\end{array}\n\right\} m - c \text{ hamiltonian } n \text{-tuples}
$$

One more reduction step

Proposition

Let G and H be hamiltonian decomposable directed graphs such that $|V(G)|=n$ is even. If $\vec{\mathit{C}}_2 \wr H$ is hamiltonian decomposable then $\vec{C}_n \wr H$ is hamiltonian decomposable.

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

Summary: It suffices to show that $\vec{\mathit{C}}_2 \wr \mathit{H}$ is hamiltonian decomposable

Consequences

Let H be a digraph on m vertices that admits a decomposition into c directed hamiltonian cycles ($1 \leqslant c \leqslant m-2).$ The digraph $\vec{\mathit{C}}_2 \wr \mathit{H}$ is hamiltonian decomposable if there exists m pairs of permutations such that:

$$
(\mu_0, \tau_0);
$$
\n
$$
(\mu_1, \tau_1);
$$
\n
$$
(\mu_{c-1}, \tau_{c-1});
$$
\n
$$
(\mu_{c-1}, \tau_{c-1});
$$
\n
$$
(\mu_{c+1}, \tau_{c+1});
$$
\n
$$
(\mu_{m-1}, \tau_{m-1}).
$$
\n
$$
\begin{cases}\nm - c \text{ hamiltonian pairs} \\
\vdots \\
\vdots \\
\vdots\n\end{cases}
$$

[Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs](#page-0-0)

Solution for the case for $m = 13$ and $c = 2$

If H is a digraph on $m = 13$ vertices that admits a decomposition into 2 hamiltonian cycles, then we aim to construct a set of 13 pairs of permutations.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs](#page-0-0)

Solution for the case for $m = 13$ and $c = 2$

If H is a digraph on $m = 13$ vertices that admits a decomposition into 2 hamiltonian cycles, then we aim to construct a set of 13 pairs of permutations.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Step 1: To construct two decomposition families.

The decomposition family \mathcal{F}_{13}

$$
\sigma_1 = (0, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
$$
\n
$$
\sigma_2 = (0, 2, 4, 6, 12, 8, 10)(1, 3, 5, 7, 9, 11);
$$
\n
$$
\sigma_3 = (0, 12, 3, 6, 9)(1, 4, 7, 10)(2, 5, 8, 11);
$$
\n
$$
\sigma_4 = (0, 4, 8)(1, 5, 12, 9)(2, 6, 10)(3, 7, 11);
$$
\n
$$
\sigma_5 = (0, 5, 10, 3, 8, 1, 6, 11, 12, 4, 9, 2, 7);
$$
\n
$$
\sigma_6 = (0, 6)(1, 7)(2, 8)(3, 9)(4, 12, 10)(5, 11);
$$
\n
$$
\sigma_7 = (0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 12, 5);
$$
\n
$$
\sigma_8 = (0, 8, 4)(1, 9, 5)(2, 10, 6)(3, 12, 11, 7);
$$
\n
$$
\sigma_9 = (0, 9, 12, 6, 3)(1, 10, 7, 4)(2, 11, 8, 5);
$$
\n
$$
\sigma_{10} = (0, 10, 8, 6, 4, 2, 12)(1, 11, 9, 7, 5, 3);
$$
\n
$$
\sigma_{11} = (0, 11, 10, 9, 8, 12, 7, 6, 5, 4, 3, 2, 1);
$$
\n
$$
\sigma_{12} = (0, 3, 11, 4, 10, 5, 9, 6, 8, 7, 12, 1, 2);
$$
\n
$$
\sigma_0 = id.
$$

KELK KØLK VELKEN EL 1990

Solution for the case for $m = 13$ and $c = 2$

If H is a digraph on $m = 13$ vertices that admits a decomposition into 2 hamiltonian cycles, then we aim to construct a set of 13 pairs of permutations.

Step 1: To construct two decomposition families.

Step 2: We construct a set of 13 pairs of permutations using elements of $\mathcal{F}_{13} \times \mathcal{F}_{13}$.

KORKARYKERKER POLO

Hamiltonian array of $\mathcal{F}_{13} \times \mathcal{F}_{13}$

Hamiltonian array of $\mathcal{F}_{13} \times \mathcal{F}_{13}$

Hamiltonian array of $\mathcal{F}_{13} \times \mathcal{F}_{13}$

Solution for $m = 13$ and $c = 2$

Solution for $m = 13$ and $c = 4$

Solution for $m = 13$ and $c = 10$

Summary of results

Theorem

Let G and H be hamiltonian decomposable directed graphs such that $|V(H)| > 3$ and $|V(G)|$ is even. Then G \wr H is hamiltonian decomposable except possibly when

- **1** G is a directed cycle,
- 2 $|V(H)|$ is even, and

3 H admits a decomposition into an odd number of directed hamiltonian cycles.

KORKAR KERKER ST VOOR

Proposition

If n is even, then $\vec{\mathcal{C}}_n \wr \vec{\mathcal{C}}_2$ and $\vec{\mathcal{C}}_n \wr \vec{\mathcal{C}}_3$ are not hamiltonian decomposable.

Thanks!

