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Hamiltonian decomposable

Definition

A graph (directed graph) is hamiltonian decomposable if it
admits a decomposition into (directed) hamiltonian cycles.
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Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if...
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Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if x = u and (y , v) ∈ A(H), or...

H
G



Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if x = u and (y , v) ∈ A(H) or (x , u) ∈ A(G ).
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Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if x = u and (y , v) ∈ A(H) or (x , u) ∈ A(G ).

H
G



Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ≀ H also hamiltonian decomposable?



Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ≀ H also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then G ≀ H is
also hamiltonian decomposable.
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Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ≀ H also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then G ≀ H is
also hamiltonian decomposable.

Theorem (Ng, 1998)

If G and H are hamiltonian decomposable digraphs, |V (G )| is odd,
and |V (H)| > 2, then G ≀ H is also hamiltonian decomposable.
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Main question refined

Question: Given two hamiltonian decomposable digraphs
graphs G and H, such that |V (G )| is even, is G ≀ H also
hamiltonian decomposable?
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Reduction

Proposition (Ng, 1998)

Let G and H be hamiltonian decomposable directed graphs such
that |V (G )| = n and |V (H)| = m. If

1 C⃗n ≀ H is hamiltonian decomposable,

2 and C⃗n ≀ Km are hamiltonian decomposable,

then G ≀ H is hamiltonian decomposable.

Note that C⃗n denotes the directed cycle on n vertices.
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

0
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C⃗3
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

0
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K 3

C⃗3

F0 = (id , id , (0, 1, 2)).
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

0

1

2

K 3

C⃗3

F0 = (id , id , (0, 1, 2));

F1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1)).
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

0

1

2

K 3

C⃗3

F0 = (id , id , (0, 1, 2));

F1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1));

F2 = ((0, 2, 1), (0, 2, 1), id).
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2-factorization of C⃗n ≀ Km

Each 2-factorization of C⃗n ≀ Km can be described as a set of m
n-tuples of permutations from Sm:

F =


(µ(0,0), µ(0,1), . . . , µ(0,n−1));
(µ(1,0), µ(1,1), . . . , µ(1,n−1));

...
(µ(m−1,0), µ(m−1,1), . . . , µ(m−1,n−1)).


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Decomposition families

Definition

Let T = {µ(0,j), µ(1,j), . . . , µ(m−1,j)} be a set of m permutations
from the symmetric group Sm. The set T is a decomposition
family of order m if µ(k1,j)µ

−1
(k2,j)

is a derangement for all
µ(k1,j) ̸= µ(k2,j).

Example:

F =


(id , id , (0, 1, 2))
((0, 1, 2), (0, 1, 2), (0, 2, 1))
((0, 2, 1), (0, 2, 1), id)


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Hamiltonian n-tuple

Definition

Let µ(i ,0), µ(i ,1), . . . , µ(i ,n−1) ∈ Sm. The n-tuple
(µ(i ,0), µ(i ,1), . . . , µ(i ,n−1)) is a hamiltonian n-tuple if

τi = µ(i ,0)µ(i ,1) . . . µ(i ,n−1)

is a permutation on a single cycle.

Example:

F0 = (id , id , (0, 1, 2)) ⇒ τ0 = (0, 1, 2).
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Hamiltonian n-tuple

Definition

Let µ(i ,0), µ(i ,1), . . . , µ(i ,n−1) ∈ Sm. The n-tuple
(µ(i ,0), µ(i ,1), . . . , µ(i ,n−1)) is a hamiltonian n-tuple if

τi = µ(i ,0)µ(i ,1) . . . µ(i ,n−1)

is a permutation on a single cycle.

Example:

F0 = (id , id , (0, 1, 2)) ⇒ τ0 = (0, 1, 2);
F1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1)) ⇒ τ1 = (0, 1, 2)(0, 1, 2)(0, 2, 1)

= (0, 1, 2).
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Hamiltonian n-tuple

Definition

Let µ(i ,0), µ(i ,1), . . . , µ(i ,n−1) ∈ Sm. The n-tuple
(µ(i ,0), µ(i ,1), . . . , µ(i ,n−1)) is a hamiltonian n-tuple if

τi = µ(i ,0)µ(i ,1) . . . µ(i ,n−1)

is a permutation on a single cycle.

Example:

F0 = (id , id , (0, 1, 2)) ⇒ τ0 = (0, 1, 2);
F1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1)) ⇒ τ1 = (0, 1, 2)(0, 1, 2)(0, 2, 1)

= (0, 1, 2);
F2 = ((0, 2, 1), (0, 2, 1), id) ⇒ τ2 = (0, 2, 1)(0, 2, 1) = (0, 1, 2).



Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

In summary

The digraph C⃗n ≀ Km is hamiltonian decomposable if we have

(µ0,0, µ0,1, . . . , µ0,n−1);
(µ1,0, µ1,1, . . . , µ1,n−1);
...

...
...

...
(µm−1,0, µm−1,1, . . . , µm−1,n−1).

m hamiltonian n-tuples

where {µ(0,i), µ(1,i), . . . µ(m−1,i)} is a decomposition family of order
m for each i ∈ Zn.
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Hamiltonian decomposition of C⃗n ≀ H

We will take a similar approach for the digraph C⃗n ≀ H:

(µ0,0, µ0,1, . . . , µ0,n−1);
(µ1,0, µ1,1, . . . , µ1,n−1);
...

...
...

...
(µm−1,0, µm−1,1, . . . , µm−1,n−1).

m n-tuples such that...

where {µ(0,i), µ(1,i), . . . µ(m−1,i)} is a decomposition family of order
m for each i ∈ Zn.
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Truncation of a permutation

Definition

Let µ ∈ Sm be such that (m − 1)µ ̸= m − 1. The truncation of
µ, denoted µ̂, is the permutation

µ̂ = µ (m − 1, (m − 1)µ).

Example: µ = (0, 1, 2, 3, 4, 5, 6, 7) ∈ S8.
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Truncation of a permutation

Definition

Let µ ∈ Sm be such that (m − 1)µ ̸= m − 1. The truncation of
µ, denoted µ̂, is the permutation

µ̂ = µ (m − 1, (m − 1)µ).

Example: µ = (0, 1, 2, 3, 4, 5, 6, 7) ∈ S8;

µ̂ = (0, 1, 2, 3, 4, 5, 6, 7)(7, 0).
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Truncation of a permutation

Definition

Let µ ∈ Sm be such that (m − 1)µ ̸= m − 1. The truncation of
µ, denoted µ̂, is the permutation

µ̂ = µ (m − 1, (m − 1)µ).

Example: µ = (0, 1, 2, 3, 4, 5, 6, 7) ∈ S8;

µ̂ = (0, 1, 2, 3, 4, 5, 6, 7)(7, 0);

µ̂ = (0, 1, 2, 3, 4, 5, 6) (7).
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Truncated hamiltonian n-tuple

Definition

Let µ(i ,0), µ(i ,1), . . . , µ(i ,n−1) ∈ Sm. The n-tuple
(µ(i ,0), µ(i ,1), . . . , µ(i ,n−1)) is a truncated hamiltonian n-tuple if

σi = µ̂(i ,0)µ̂(i ,1) . . . µ̂(i ,n−1)

is a permutation with two cycles in its disjoint cycle notation.

Example: ((0, 2), (0, 2), (0, 1, 2)), where (0, 2), (0, 1, 2) ∈ S3
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Truncated hamiltonian n-tuple

Definition

Let µ(i ,0), µ(i ,1), . . . , µ(i ,n−1) ∈ Sm. The n-tuple
(µ(i ,0), µ(i ,1), . . . , µ(i ,n−1)) is a truncated hamiltonian n-tuple if

σi = µ̂(i ,0)µ̂(i ,1) . . . µ̂(i ,n−1)

is a permutation with two cycles in its disjoint cycle notation.

Example: ((0, 2), (0, 2), (0, 1, 2));

σ = id id (0, 1)(2).
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Truncated hamiltonian n-tuple

Definition

Let µ(i ,0), µ(i ,1), . . . , µ(i ,n−1) ∈ Sm. The n-tuple
(µ(i ,0), µ(i ,1), . . . , µ(i ,n−1)) is a truncated hamiltonian n-tuple if

σi = µ̂(i ,0)µ̂(i ,1) . . . µ̂(i ,n−1)

is a permutation with two cycles in its disjoint cycle notation.

Example:((0, 2), (0, 2), (0, 1, 2));

σ = id id (0, 1)(2);
σ = (0, 1)(2).
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General Approach

Let H be a digraph on m vertices that admits a decomposition into
c directed hamiltonian cycles (1 ⩽ c ⩽ m− 2). The digraph C⃗n ≀H
is hamiltonian decomposable if we have:

(µ0,0, µ0,1, . . . , µ0,n−1);
(µ1,0, µ1,1, . . . , µ1,n−1);

...
(µc−1,0, µc−1,1, . . . , µc−1,n−1);

 c truncated hamiltonian n-tuples

(µc,0, µc,1, . . . , µc,n−1);
(µc+1,0, µc+1,1, . . . , µc+1,n−1);

...
(µm−1,0, µm−1,1, . . . , µm−1,n−1).

m − c hamiltonian n-tuples
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One more reduction step

Proposition

Let G and H be hamiltonian decomposable directed graphs such
that |V (G )| = n is even. If C⃗2 ≀ H is hamiltonian decomposable
then C⃗n ≀ H is hamiltonian decomposable.

Summary: It suffices to show that C⃗2 ≀ H is hamiltonian
decomposable
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Consequences

Let H be a digraph on m vertices that admits a decomposition into
c directed hamiltonian cycles (1 ⩽ c ⩽ m− 2). The digraph C⃗2 ≀H
is hamiltonian decomposable if there exists m pairs of
permutations such that:

(µ0, τ0);
(µ1, τ1);

...
(µc−1, τc−1);

 c truncated hamiltonian pairs

(µc , τc);
(µc+1, τc+1);

...
(µm−1, τm−1).

m − c hamiltonian pairs
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Solution for the case for m = 13 and c = 2

If H is a digraph on m = 13 vertices that admits a decomposition
into 2 hamiltonian cycles, then we aim to construct a set of 13
pairs of permutations.
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Solution for the case for m = 13 and c = 2

If H is a digraph on m = 13 vertices that admits a decomposition
into 2 hamiltonian cycles, then we aim to construct a set of 13
pairs of permutations.

Step 1: To construct two decomposition families.
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The decomposition family F13

F13 =



σ1 = (0, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11);
σ2 = (0, 2, 4, 6, 12, 8, 10)(1, 3, 5, 7, 9, 11);
σ3 = (0, 12, 3, 6, 9)(1, 4, 7, 10)(2, 5, 8, 11);
σ4 = (0, 4, 8)(1, 5, 12, 9)(2, 6, 10)(3, 7, 11);
σ5 = (0, 5, 10, 3, 8, 1, 6, 11, 12, 4, 9, 2, 7);
σ6 = (0, 6)(1, 7)(2, 8)(3, 9)(4, 12, 10)(5, 11);
σ7 = (0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 12, 5);
σ8 = (0, 8, 4)(1, 9, 5)(2, 10, 6)(3, 12, 11, 7);
σ9 = (0, 9, 12, 6, 3)(1, 10, 7, 4)(2, 11, 8, 5);
σ10 = (0, 10, 8, 6, 4, 2, 12)(1, 11, 9, 7, 5, 3);
σ11 = (0, 11, 10, 9, 8, 12, 7, 6, 5, 4, 3, 2, 1);
σ12 = (0, 3, 11, 4, 10, 5, 9, 6, 8, 7, 12, 1, 2);
σ0 = id .


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Solution for the case for m = 13 and c = 2

If H is a digraph on m = 13 vertices that admits a decomposition
into 2 hamiltonian cycles, then we aim to construct a set of 13
pairs of permutations.

Step 1: To construct two decomposition families.

Step 2: We construct a set of 13 pairs of permutations using
elements of F13 ×F13.
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Hamiltonian array of F13 ×F13

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ0
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σ11

σ12

σ0
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Hamiltonian array of F13 ×F13
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Hamiltonian array of F13 ×F13
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Solution for m = 13 and c = 2

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ0

σ1

σ2

σ3

σ4

σ5

σ6
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σ9
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σ11
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Solution for m = 13 and c = 4

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ0

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ11

σ12

σ0
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Solution for m = 13 and c = 10

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 σ11 σ12 σ0

σ1

σ2

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ11

σ12

σ0
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Summary of results

Theorem

Let G and H be hamiltonian decomposable directed graphs such
that |V (H)| > 3 and |V (G )| is even. Then G ≀ H is hamiltonian
decomposable except possibly when

1 G is a directed cycle,
2 |V (H)| is even, and
3 H admits a decomposition into an odd number of directed

hamiltonian cycles.

Proposition

If n is even, then C⃗n ≀ C⃗2 and C⃗n ≀ C⃗3 are not hamiltonian
decomposable.
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Thanks!


