Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Alice Lacaze-Masmonteil, University of Ottawa

July 16, 2024

Hamiltonian decomposable

Definition

A graph (directed graph) is **hamiltonian decomposable** if it admits a decomposition into (directed) hamiltonian cycles.

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if x = u and $(y, v) \in A(H)$, or...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if x = u and $(y, v) \in A(H)$ or $(x, u) \in A(G)$.

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if x = u and $(y, v) \in A(H)$ or $(x, u) \in A(G)$.

Main problem

Question: Given two hamiltonian decomposable (directed) graphs G and H, is $G \wr H$ also hamiltonian decomposable?

Main problem

Question: Given two hamiltonian decomposable (directed) graphs G and H, is $G \wr H$ also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then $G \ H$ is also hamiltonian decomposable.

Main problem

Question: Given two hamiltonian decomposable (directed) graphs G and H, is $G \wr H$ also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then $G \ H$ is also hamiltonian decomposable.

Theorem (Ng, 1998)

If G and H are hamiltonian decomposable digraphs, |V(G)| is odd, and |V(H)| > 2, then $G \wr H$ is also hamiltonian decomposable.

Main question refined

Question: Given two hamiltonian decomposable digraphs graphs G and H, such that |V(G)| is even, is $G \ge H$ also hamiltonian decomposable?

Reduction

Proposition (Ng, 1998)

Let G and H be hamiltonian decomposable directed graphs such that |V(G)| = n and |V(H)| = m. If

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

1 $\vec{C_n} \wr H$ is hamiltonian decomposable,

2 and $\vec{C}_n \wr \overline{K}_m$ are hamiltonian decomposable,

then $G \wr H$ is hamiltonian decomposable.

Note that \vec{C}_n denotes the directed cycle on *n* vertices.

The directed graph $\vec{C}_n \wr \overline{K}_m$

Lemma (Ng, 1998)

If $m \ge 3$, then $\vec{C}_n \wr \overline{K}_m$ is hamiltonian decomposable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The directed graph $\vec{C}_n \wr \overline{K}_m$

Lemma (Ng, 1998)

If $m \ge 3$, then $\vec{C}_n \wr \overline{K}_m$ is hamiltonian decomposable.

 $F_0 = (id, id, (0, 1, 2)).$

The directed graph $\vec{C}_n \wr \overline{K}_m$

Lemma (Ng, 1998)

If $m \ge 3$, then $\vec{C}_n \wr \overline{K}_m$ is hamiltonian decomposable.

The directed graph $\vec{C_n} \wr \overline{K}_m$

Lemma (Ng, 1998)

If $m \ge 3$, then $\vec{C_n} \wr \overline{K_m}$ is hamiltonian decomposable.

2-factorization of $\vec{C}_n \wr \vec{K}_m$

Each 2-factorization of $\vec{C_n} \wr \vec{K_m}$ can be described as a set of *m n*-tuples of permutations from S_m :

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\mathcal{F} = \begin{cases} & (\mu_{(0,0)}, & \mu_{(0,1)}, & \dots, & \mu_{(0,n-1)}); \\ & (\mu_{(1,0)}, & \mu_{(1,1)}, & \dots, & \mu_{(1,n-1)}); \\ & \vdots & & \\ & (\mu_{(m-1,0)}, & \mu_{(m-1,1)}, & \dots, & \mu_{(m-1,n-1)}). \end{cases}$$

Decomposition families

Definition

Let $T = \{\mu_{(0,j)}, \mu_{(1,j)}, \dots, \mu_{(m-1,j)}\}$ be a set of *m* permutations from the symmetric group S_m . The set *T* is a **decomposition family of order** *m* if $\mu_{(k_1,j)}\mu_{(k_2,j)}^{-1}$ is a derangement for all $\mu_{(k_1,j)} \neq \mu_{(k_2,j)}$.

Example:

$$\mathcal{F} = \left\{ \begin{array}{ccc} (id, & id, & (0,1,2)) \\ ((0,1,2), & (0,1,2), & (0,2,1)) \\ ((0,2,1), & (0,2,1), & id) \end{array} \right\}$$

Hamiltonian *n*-tuple

Definition

Let
$$\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)} \in S_m$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)})$ is a **hamiltonian** *n*-tuple if $\tau_i = \mu_{(i,0)}\mu_{(i,1)}\dots\mu_{(i,n-1)}$ is a permutation on a single cycle.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example:

$$F_0 = (id, id, (0, 1, 2)) \Rightarrow \tau_0 = (0, 1, 2).$$

Hamiltonian *n*-tuple

Definition

Let
$$\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a **hamiltonian** *n*-tuple if $\tau_i = \mu_{(i,0)}\mu_{(i,1)} \ldots \mu_{(i,n-1)}$ is a permutation on a single cycle.

Example:

$$\begin{split} F_0 &= (\textit{id}, \textit{id}, (0, 1, 2)) \Rightarrow \tau_0 = (0, 1, 2); \\ F_1 &= ((0, 1, 2), (0, 1, 2), (0, 2, 1)) \Rightarrow \tau_1 = (0, 1, 2)(0, 1, 2)(0, 2, 1) \\ &= (0, 1, 2). \end{split}$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Hamiltonian *n*-tuple

Definition

Let
$$\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)} \in S_m$$
. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)})$ is a **hamiltonian** *n*-tuple if $\tau_i = \mu_{(i,0)}\mu_{(i,1)}\dots\mu_{(i,n-1)}$ is a permutation on a single cycle

is a permutation on a single cycle.

Example:

$$\begin{split} F_0 &= (id, id, (0, 1, 2)) \Rightarrow \tau_0 = (0, 1, 2); \\ F_1 &= ((0, 1, 2), (0, 1, 2), (0, 2, 1)) \Rightarrow \tau_1 = (0, 1, 2)(0, 1, 2)(0, 2, 1) \\ &= (0, 1, 2); \\ F_2 &= ((0, 2, 1), (0, 2, 1), id) \Rightarrow \tau_2 = (0, 2, 1)(0, 2, 1) = (0, 1, 2). \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

In summary

The digraph $\vec{C}_n \wr \overline{K}_m$ is hamiltonian decomposable if we have

$$\begin{pmatrix} (\mu_{0,0}, & \mu_{0,1}, & \dots, & \mu_{0,n-1}); \\ (\mu_{1,0}, & \mu_{1,1}, & \dots, & \mu_{1,n-1}); \\ \vdots & \vdots & \vdots & \vdots \\ (\mu_{m-1,0}, & \mu_{m-1,1}, & \dots, & \mu_{m-1,n-1}). \end{pmatrix} m \text{ hamiltonian } n\text{-tuples}$$

where $\{\mu_{(0,i)}, \mu_{(1,i)}, \dots, \mu_{(m-1,i)}\}$ is a decomposition family of order m for each $i \in \mathbb{Z}_n$.

Hamiltonian decomposition of $\vec{C}_n \wr H$

We will take a similar approach for the digraph $\vec{C}_n \wr H$:

$$\begin{pmatrix} (\mu_{0,0}, & \mu_{0,1}, & \dots, & \mu_{0,n-1}); \\ (\mu_{1,0}, & \mu_{1,1}, & \dots, & \mu_{1,n-1}); \\ \vdots & \vdots & \vdots & \vdots \\ (\mu_{m-1,0}, & \mu_{m-1,1}, & \dots, & \mu_{m-1,n-1}). \end{pmatrix} m n-tuples such that...$$

where $\{\mu_{(0,i)}, \mu_{(1,i)}, \dots, \mu_{(m-1,i)}\}$ is a decomposition family of order m for each $i \in \mathbb{Z}_n$.

Truncation of a permutation

Definition

Let $\mu \in S_m$ be such that $(m-1)^{\mu} \neq m-1$. The **truncation** of μ , denoted $\hat{\mu}$, is the permutation $\hat{\mu} = \mu (m-1, (m-1)^{\mu}).$

Example: $\mu = (0, 1, 2, 3, 4, 5, 6, 7) \in S_8$.

Truncation of a permutation

Definition

Let $\mu \in S_m$ be such that $(m-1)^{\mu} \neq m-1$. The **truncation** of μ , denoted $\hat{\mu}$, is the permutation $\hat{\mu} = \mu (m-1, (m-1)^{\mu}).$

A D N A 目 N A E N A E N A B N A C N

Example: $\mu = (0, 1, 2, 3, 4, 5, 6, 7) \in S_8$;

 $\hat{\mu} = (0, 1, 2, 3, 4, 5, 6, 7)(7, 0).$

Truncation of a permutation

Definition

Let $\mu \in S_m$ be such that $(m-1)^{\mu} \neq m-1$. The **truncation** of μ , denoted $\hat{\mu}$, is the permutation $\hat{\mu} = \mu (m-1, (m-1)^{\mu}).$

Example: $\mu = (0, 1, 2, 3, 4, 5, 6, 7) \in S_8$;

 $\hat{\mu}=(0,1,2,3,4,5,6,7)$ (7,0);

 $\hat{\mu} = (0, 1, 2, 3, 4, 5, 6)$ (7).

Truncated hamiltonian *n*-tuple

Definition

Let $\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)} \in S_m$. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \ldots, \mu_{(i,n-1)})$ is a **truncated hamiltonian** *n*-tuple if $\sigma_i = \hat{\mu}_{(i,0)} \hat{\mu}_{(i,1)} \ldots \hat{\mu}_{(i,n-1)}$ is a permutation with two cycles in its disjoint cycle notation.

Example: ((0,2), (0,2), (0,1,2)), where $(0,2), (0,1,2) \in S_3$

Truncated hamiltonian *n*-tuple

Definition

Let
$$\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)} \in S_m$$
. The *n*-tuple
 $(\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)})$ is a **truncated hamiltonian** *n*-tuple if
 $\sigma_i = \hat{\mu}_{(i,0)} \hat{\mu}_{(i,1)} \dots \hat{\mu}_{(i,n-1)}$
is a permutation with two scalar in its divisint curls notation

is a permutation with two cycles in its disjoint cycle notation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example: ((0, 2), (0, 2), (0, 1, 2)); $\sigma = id id (0, 1)(2).$

Truncated hamiltonian *n*-tuple

Definition

Let $\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)} \in S_m$. The *n*-tuple $(\mu_{(i,0)}, \mu_{(i,1)}, \dots, \mu_{(i,n-1)})$ is a **truncated hamiltonian** *n*-**tuple** if $\sigma_i = \hat{\mu}_{(i,0)} \hat{\mu}_{(i,1)} \dots \hat{\mu}_{(i,n-1)}$

is a permutation with two cycles in its disjoint cycle notation.

Example: ((0, 2), (0, 2), (0, 1, 2));

 $\sigma = id id (0, 1)(2);$ $\sigma = (0, 1)(2).$

General Approach

Let *H* be a digraph on *m* vertices that admits a decomposition into *c* directed hamiltonian cycles $(1 \le c \le m-2)$. The digraph $\vec{C_n} \wr H$ is hamiltonian decomposable if we have:

$$\begin{pmatrix} \mu_{0,0}, & \mu_{0,1}, & \dots, & \mu_{0,n-1} \end{pmatrix}; \\ (\mu_{1,0}, & \mu_{1,1}, & \dots, & \mu_{1,n-1}); \\ \vdots \\ (\mu_{c-1,0}, & \mu_{c-1,1}, & \dots, & \mu_{c-1,n-1}); \end{pmatrix} c \text{ truncated hamiltonian } n\text{-tuples}$$

$$\begin{pmatrix} \mu_{c,0}, & \mu_{c,1}, & \dots, & \mu_{c,n-1}); \\ (\mu_{c+1,0}, & \mu_{c+1,1}, & \dots, & \mu_{c+1,n-1}); \\ \vdots \\ (\mu_{m-1,0}, & \mu_{m-1,1}, & \dots, & \mu_{m-1,n-1}). \end{pmatrix} m - c \text{ hamiltonian } n\text{-tuples}$$

One more reduction step

Proposition

Let G and H be hamiltonian decomposable directed graphs such that |V(G)| = n is even. If $\vec{C_2} \wr H$ is hamiltonian decomposable then $\vec{C_n} \wr H$ is hamiltonian decomposable.

Summary: It suffices to show that $\vec{C}_2 \wr H$ is hamiltonian decomposable

Consequences

Let H be a digraph on m vertices that admits a decomposition into c directed hamiltonian cycles $(1 \le c \le m-2)$. The digraph $\vec{C}_2 \wr H$ is hamiltonian decomposable if there exists m pairs of permutations such that:

$$\begin{pmatrix} (\mu_0, \tau_0); \\ (\mu_1, \tau_1); \\ \vdots \\ (\mu_{c-1}, \tau_{c-1}); \end{pmatrix} c \text{ truncated hamiltonian pairs}$$

$$\begin{pmatrix} (\mu_c, \tau_c); \\ (\mu_{c+1}, \tau_{c+1}); \\ \vdots \\ (\mu_{m-1}, \tau_{m-1}). \end{pmatrix} m - c \text{ hamiltonian pairs}$$

Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Solution for the case for m = 13 and c = 2

If H is a digraph on m = 13 vertices that admits a decomposition into 2 hamiltonian cycles, then we aim to construct a set of 13 pairs of permutations.

Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Solution for the case for m = 13 and c = 2

If H is a digraph on m = 13 vertices that admits a decomposition into 2 hamiltonian cycles, then we aim to construct a set of 13 pairs of permutations.

Step 1: To construct two decomposition families.

The decomposition family \mathcal{F}_{13}

$$\mathcal{F}_{13} = \left\{ \begin{array}{l} \sigma_1 = (0, 1, 12, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11); \\ \sigma_2 = (0, 2, 4, 6, 12, 8, 10)(1, 3, 5, 7, 9, 11); \\ \sigma_3 = (0, 12, 3, 6, 9)(1, 4, 7, 10)(2, 5, 8, 11); \\ \sigma_4 = (0, 4, 8)(1, 5, 12, 9)(2, 6, 10)(3, 7, 11); \\ \sigma_5 = (0, 5, 10, 3, 8, 1, 6, 11, 12, 4, 9, 2, 7); \\ \sigma_6 = (0, 6)(1, 7)(2, 8)(3, 9)(4, 12, 10)(5, 11); \\ \sigma_7 = (0, 7, 2, 9, 4, 11, 6, 1, 8, 3, 10, 12, 5); \\ \sigma_8 = (0, 8, 4)(1, 9, 5)(2, 10, 6)(3, 12, 11, 7); \\ \sigma_9 = (0, 9, 12, 6, 3)(1, 10, 7, 4)(2, 11, 8, 5); \\ \sigma_{10} = (0, 10, 8, 6, 4, 2, 12)(1, 11, 9, 7, 5, 3); \\ \sigma_{11} = (0, 11, 10, 9, 8, 12, 7, 6, 5, 4, 3, 2, 1); \\ \sigma_{12} = (0, 3, 11, 4, 10, 5, 9, 6, 8, 7, 12, 1, 2); \\ \sigma_0 = id. \end{array} \right\}$$

Solution for the case for m = 13 and c = 2

If H is a digraph on m = 13 vertices that admits a decomposition into 2 hamiltonian cycles, then we aim to construct a set of 13 pairs of permutations.

Step 1: To construct two decomposition families.

Step 2: We construct a set of 13 pairs of permutations using elements of $\mathcal{F}_{13} \times \mathcal{F}_{13}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Hamiltonian array of $\mathcal{F}_{13} \times \mathcal{F}_{13}$

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	σ_{12}	σ_0
σ_1													
σ_2													
σ_3													
σ_4													
σ_5													
σ_6													
σ7													
σ_8													
σ_9													
σ_{10}													
σ_{11}													
σ_{12}													
σ_0													

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Hamiltonian array of $\mathcal{F}_{13} \times \mathcal{F}_{13}$

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	σ_{12}	σ_0
σ_1													
σ_2													
σ_3													
σ_4													
σ_5													
σ_6													
σ_7													
σ_8													
σ_9													
σ_{10}													
σ_{11}													
σ_{12}													
σ_0													

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Hamiltonian array of $\mathcal{F}_{13} \times \mathcal{F}_{13}$

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	σ_{12}	σ_0
σ_1													
σ_2													
σ_3													
σ_4													
σ_5													
σ_6													
σ_7													
σ_8													
σ_9													
σ_{10}													
σ_{11}													
σ_{12}													
σ_0													

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Solution for m = 13 and c = 2

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	σ_{12}	σ_0
σ_1													
σ_2													
σ_3													
σ_4													
σ_5													
σ_6													
σ_7													
σ_8													
σ_9													
σ_{10}													
σ_{11}													
σ_{12}													
σ_0													

Solution for m = 13 and c = 4

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	σ_{12}	σ_0
σ_1													
σ_2													
σ_3													
σ_4													
σ_5													
σ_6													
σ_7													
σ_8													
σ_9													
σ_{10}													
σ_{11}													
σ_{12}													
σ_0													

Solution for m = 13 and c = 10

	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9	σ_{10}	σ_{11}	σ_{12}	σ_0
σ_1													
σ_2													
σ_3													
σ_4													
σ_5													
σ_6													
σ_7													
σ_8													
σ_9													
σ_{10}													
σ_{11}													
σ_{12}													
σ_0													

Summary of results

Theorem

Let G and H be hamiltonian decomposable directed graphs such that |V(H)| > 3 and |V(G)| is even. Then $G \wr H$ is hamiltonian decomposable except possibly when

- 1 G is a directed cycle,
- **2** |V(H)| is even, and

3 H admits a decomposition into an odd number of directed hamiltonian cycles.

Proposition

If n is even, then $\vec{C}_n \wr \vec{C}_2$ and $\vec{C}_n \wr \vec{C}_3$ are not hamiltonian decomposable.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Thanks!

