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Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Hamiltonian decomposable

A graph (directed graph) is hamiltonian decomposable if it
admits a decomposition into (directed) hamiltonian cycles.
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Wreath product

Definition

The wreath product of G and H, denoted G H, is a digraph on
vertex set V(G) x V(H), where ((x,y), (u,v)) € A(G U H) if and
only if...
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Wreath product

Definition

The wreath product of G and H, denoted G H, is a digraph on
vertex set V(G) x V(H), where ((x,y), (u,v)) € A(G U H) if and
only if x = v and (y, v) € A(H), or...
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Wreath product

Definition

The wreath product of G and H, denoted G H, is a digraph on
vertex set V(G) x V(H), where ((x, y), (u,v)) € A(G H) if and
only if x = u and (y, v) € A(H) or (x, u) € A(G).
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Wreath product

Definition

The wreath product of G and H, denoted G H, is a digraph on
vertex set V(G) x V(H), where ((x, y), (u,v)) € A(G H) if and
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Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ! H also hamiltonian decomposable?
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Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ! H also hamiltonian decomposable?

Theorem (Baranyai and Szas, 1981)

If G and H are hamiltonian decomposable graphs, then G H is
also hamiltonian decomposable.
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Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ! H also hamiltonian decomposable?

Theorem (Baranyai and Szds, 1981)

If G and H are hamiltonian decomposable graphs, then G H is
also hamiltonian decomposable.

Theorem (Ng, 1998)

If G and H are hamiltonian decomposable digraphs, |V (G)| is odd,
and |V(H)| > 2, then G H is also hamiltonian decomposable.
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Main question refined

Question: Given two hamiltonian decomposable digraphs
graphs G and H, such that |V(G)| is even, is G ! H also
hamiltonian decomposable?
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Reduction

Proposition (Ng, 1998)

Let G and H be hamiltonian decomposable directed graphs such
that |V(G)| = n and |V(H)| = m. If

an U H is hamiltonian decomposable,
and 6n ! K, are hamiltonian decomposable,

then G ¢ H is hamiltonian decomposable.

Note that an denotes the directed cycle on n vertices.
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The directed graph C,? K,

Lemma (Ng, 1998)

If m > 3, then 5,, ! K is hamiltonian decomposable.

C, ® o o °




Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

The directed graph C,? K,

Lemma (Ng, 1998)

If m > 3, then 5,, V K is hamiltonian decomposable.

G, ® o o '
K3
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Fo = (id, id, (0, 1,2)).
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The directed graph C,? K,

Lemma (Ng, 1998)

If m > 3, then 5,, ! K is hamiltonian decomposable.

Fo = (id,id,(0,1,2));
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The directed graph C,? K,

Lemma (Ng, 1998)

If m > 3, then 5,, V Ky is hamiltonian decomposable.

C; @ o o °

0e
. Z
20 N\

Fo = (id,id,(0,1,2));

F, = ((0,2,1),(0,2,1),id).
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2-factorization of C, 1 K,

Each 2-factorization of an ! Ky can be described as a set of m
n-tuples of permutations from S,,:

(:U’(O,O)v H(0,1)> cee H(o,n—l));

F— (:U’(1,0)7 /“L(l,.l)a SRR :U’(l,n—l));

(:U’(m—l,O)v H(m-1,1), ~--+> N(m—l,n—l))-
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Decomposition families

Definition

Let T = {1(0), i4(1j)> - - - » H(m—1,j) } De a set of m permutations
from the symmetric group S,,. The set T is a decomposition

family of order m if /‘(li)”aéJ) is a derangement for all

H(kyj) # H(ka,j)-

Example:
(Id7 id? (0’1’2))
F = ((0,1,2), (0,1,2), (0,2,1))
((0,2,1), (0,2,1), id)



Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Hamiltonian n-tuple

Let p(i0), #(i,1)s - - - s 4(i,n—1) € Sm- The n-tuple
(,UJ(,',O), H(i)s - 7N(i,n—1)) is a hamiltonian n-tuple if

Ti = H(i,0)H(i,1) - - - H(i,n—1)
is a permutation on a single cycle.

Definition

Example:

Fo = (id, id, (0,1,2)) = 70 = (0,1,2).
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Hamiltonian n-tuple

Definition

Let 11,0y H(i,1)s - - - s H(i,n—1) € Sm- The n-tuple

(14(i,0)> B4(i,1)5 - - - 5 H(i,n—1)) 18 @ hamiltonian n-tuple if
Ti = H(@i,0)H(i,1) - - - H(i,n—1)

is a permutation on a single cycle.
Example:

Fo = (id, id, (0, 1, 2)) = T0 — (0, 1, 2);
F =1((0,1,2),(0,1,2),(0,2,1)) = n = (0,1,2)(0,1,2)(0,2,1)
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Hamiltonian n-tuple

Definition
Let p(i0), H(i,1)s -+ - s 4(i,n—1) € Sm- The n-tuple
(14(i,0)> (i, 1) - - - 5 M(i,n—1)) is @ hamiltonian n-tuple if

Ti = H(@i,0)H(i,1) - - - H(i,n—1)
is a permutation on a single cycle.

Example:

Fo = (id,id,(0,1,2)) = 70 = (0,1, 2);

F =1((0,1,2),(0,1,2),(0,2,1)) = 71 = (0,1,2)(0,1,2)(0,2,1)
0,1,2);

F2 - ((07 27 1)7 (07 27 1)? Id) = 2 = (07 27 1)(07 27 1) = (07 17 2)

—~
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In summary

The digraph Cn 1 K is hamiltonian decomposable if we have

(ko,0, HO1s  -e-s  HOn—1);
(11,0, P11, --es M1n-1); o

. . ) ) m hamiltonian n-tuples
(Bm=1,0, Bm—11, ---s HEm—1,n—1)-

where {u((,’,-),,u(l,,-), . M(m—l,i)} is a decomposition family of order
m for each i € Z,,.
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Hamiltonian decomposition of C,lH

We will take a similar approach for the digraph Co U H:

(10,0, o1,  --es HOn—1);
(p1,0, P11, --es M1n-1);

) . . . m n-tuples such that...
(Bm=1,00 Bm—11, - -5 Hm—1,n—1)

where {u((,’,-),,u(l,,-), . M(m—l,i)} is a decomposition family of order
m for each i € Z,,.
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Truncation of a permutation

Definition
Let p € Sy be such that (m — 1)* # m — 1. The truncation of
1, denoted [i, is the permutation

g=p(m—1(m—1)").

Example: ¢ = (0,1,2,3,4,5,6,7) € Sg.
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Truncation of a permutation

Let p € Sy be such that (m — 1)* # m — 1. The truncation of
u, denoted [i, is the permutation

fi=p(m—1,(m— 1))
Example: ¢ = (0,1,2,3,4,5,6,7) € Sg;

fi=(0,1,2,3,4,5,6,7)(7,0).
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Truncation of a permutation

Definition
Let p € Sy be such that (m — 1)* # m — 1. The truncation of
1, denoted [i, is the permutation

fg=p(m—1(m—1)").
Example: ¢ =(0,1,2,3,4,5,6,7) € Sg;
i=(0,1,2,3,4,5,6,7)(7,0);

i =(0,1,2,3,4,5,6) (7).
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Truncated hamiltonian n-tuple

Definition
Let p1(i.0ys 14(i,1)s - - - 5 H(i,n—1) € Sm- The n-tuple
(14(i,0)s B4(i,1)s - - - 5 H(i,n—1)) 1S a truncated hamiltonian n-tuple if

oi = fgi,0)4i1) - - - Bgin-1)
is a permutation with two cycles in its disjoint cycle notation.

Example: ((0,2),(0,2),(0,1,2)), where (0,2),(0,1,2) € S3
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Truncated hamiltonian n-tuple

Let p(i0), #(i,1)s - - - s 4(i,n—1) € Sm- The n-tuple

(14(i,0)> B4(i,1)s - - - » H(i,n—1)) 18 a truncated hamiltonian n-tuple if
oi = fgi0)i1) - - - Bgin-1)

is a permutation with two cycles in its disjoint cycle notation.

Definition

Example: ((0,2),(0,2),(0,1,2));
o= idid(0,1)(2).
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Truncated hamiltonian n-tuple

Definition

Let 11,0 H(i,1)s - - - s H(i,n—1) € Sm- The n-tuple

(#4(i,0)> H4(i,1) - - - » H(i,n—1)) is a truncated hamiltonian n-tuple if
oi = i 0)i1) - - - Ain—1)

is a permutation with two cycles in its disjoint cycle notation.

Example:((O, 2)7 (0? 2)’ (0’ L 2));

o =idid(0,1)(2);
o =(0,1)(2).
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General Approach

Let H be a digraph on m vertices that admits a decomposition into
¢ directed hamiltonian cycles (1 < ¢ < m—2). The digraph C, ! H
is hamiltonian decomposable if we have:

(10,0, 1oL .-y HOn—1);
(k1,0, P11, --es M1n-1); -
. ¢ truncated hamiltonian n-tuples
(Mc—l,Oa He—1,1, ---, ,Uc—l,n—l);
(Mc,O, He,1, ceey Mc,n—l);

(Het1,00  Met11s -5 Metln—1); o
) m — ¢ hamiltonian n-tuples

(Bm=1,00 Bm=11, - -5 Hm—1,n—1)
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One more reduction step

Proposition

Let G and H be hamiltonian decomposable directed graphs such
that |V(G)| = n is even. If C; U H is hamiltonian decomposable
then C, U H is hamiltonian decomposable.

Summary: It suffices to show that 62 ! H is hamiltonian
decomposable
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Consequences

Let H be a digraph on m vertices that admits a decomposition into
c directed hamiltonian cycles (1 < ¢ < m —2). The digraph G H
is hamiltonian decomposable if there exists m pairs of
permutations such that:

(1o, 70);

(11, 71); . :
. ¢ truncated hamiltonian pairs

(,U/C—lvTC—l);

(,ucﬂ'c);

(He+1, Tet1); o )
. m — ¢ hamiltonian pairs

(Mm—h 7—m—1)~
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Solution for the case for m = 13 and ¢ = 2

If H is a digraph on m = 13 vertices that admits a decomposition
into 2 hamiltonian cycles, then we aim to construct a set of 13
pairs of permutations.



Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Solution for the case for m = 13 and ¢ = 2

If H is a digraph on m = 13 vertices that admits a decomposition
into 2 hamiltonian cycles, then we aim to construct a set of 13
pairs of permutations.

Step 1: To construct two decomposition families.
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The decomposition family Fi3

o1 =1(0,1,12,2,3,4,5,6,7,8,9,10,11);
o2 =(0,2,4,6,12,8,10)(1,3,5,7,9,11);
o3 =(0,12,3,6,9)(1,4,7,10)(2,5,8,11);
os = (0,4,8)(1,5,12,9)(2,6,10)(3,7,11);
05 = (051038,1,6 11 1249,2,7)
o6 = (0,6)(1,7)(2,8)(3, 9)(4 12,10)(5,11);
7= (07294116,1,8310125)
og = (0,8,4)(1,9,5)(2,10,6)(3,12,11,7);
9 =(0,9,12,6,3)(1,10,7,4)(2,11,8,5);
010 = 010864212)(1119753).
o11 = (0,11,10,9,8,12,7,6,5,4,3,2,1);
o012 =(0,3,11,4,10,5,9,6,8,7,12,1,2);
oo = id.

Fi3 =

Q

Q




Hamiltonian decompositions of the wreath product of two hamiltonian decomposable directed graphs

Solution for the case for m = 13 and ¢ = 2

If H is a digraph on m = 13 vertices that admits a decomposition
into 2 hamiltonian cycles, then we aim to construct a set of 13
pairs of permutations.

Step 1: To construct two decomposition families.

Step 2: We construct a set of 13 pairs of permutations using
elements of Fi3 x Fi3.
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Hamiltonian array of Fi3 X Fi3

o2

o3

T4

05

06

o7

o8

o9

J10

o011

012

o0

o1

02

o3

o4

05

J6

a7

o8

o9

g10

o11

012

g0
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Hamiltonian array of Fi3 x Fi3

g10

011

012

o11

012
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Hamiltonian array of Fi3 X Fi3

J10

o011

012

g10

o11

012
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Solution

rm=13and c =2

J10

o011

012

g10

o11

012
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Solution for m=13 and c =4

01| 02| 03| 04| 05| 06 | O7 | 08 | 09 | O10| O11| O12| 00

o1

02

o3

o4

o5

06

a7

o8

o9

J10

011

012
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Solution for m = 13 and ¢ = 10

o3 04 05 06 o7 [ef:] 0'9|0'10 011| 012| 00

o1

02

o3

o4

o5

06

a7

o8

o9

J10

011

012
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Summary of results

Theorem

Let G and H be hamiltonian decomposable directed graphs such
that |V(H)| > 3 and |V(G)| is even. Then G H is hamiltonian
decomposable except possibly when
G is a directed cycle,
|V(H)| is even, and
H admits a decomposition into an odd number of directed
hamiltonian cycles.

Proposition

If n is even, then an2 62 and 5,, l 63 are not hamiltonian
decomposable.
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Thanks!




