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A puzzle

The setting: Consider a conference with 11 participants. To
facilitate networking, the organizing committee decides to host 5
banquets. The banquet hall has one large round table.

The problem: The organizing committee needs a set of 5 seating
arrangements (one for each banquet) such that each participant is
seated to the right of every other participants exactly once.

Is this possible?
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The wonderful Walecki Construction

Figure: The 11 participants (one for each vertex).
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The wonderful Walecki Construction

Figure: One seating arrangement with one table of length 11.
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The wonderful Walecki Construction

Figure: One seating arrangement with one table of length 11.
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A more general puzzle

The setting: Consider a conference with n participants, with n
being odd. To facilitate networking, the organizing committee
decides to host n−1

2 banquets. The banquet hall has one large
round table.

The problem: The organizing committee needs a set of n−1
2

seating arrangements (one for each banquet) such that each
participant is seated to the right of every other participants exactly
once.

Is this possible?
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Hamiltonian decomposable

Definition

A graph (directed graph) is hamiltonian decomposable if it
admits a decomposition into (directed) hamiltonian cycles.

Question: If n is odd, is Kn (the complete graph) hamiltonian
decomposable?
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Hamiltonian decomposable graphs

The study of hamiltonian decompositions of graphs has a rich
history:

1 Kn when n is odd, and Kn − I when n is even (Walecki, 1892);

2 the complete multipartite graph Kn[m] when n(m − 1) is even
(Laskar and Auerbach, 1976);

3 every hypercube is hamiltonian decomposable (Alspach,
Bermond, and Sotteau, 1990) ;

4 Paley graphs (Alspach, Bryant, Dyer, 2012);

5 etc...
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Graph Products

⊠

(a) Strong
Product (⊠).

□

(b) Cartesian
product (□).

×

(c) Categorical
product (×).

≀

(d) Wreath
product (≀).
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Decomposing graph products

In 1978, J.-C. Bermond proposed several interesting conjectures
regarding hamiltonian decompositions of products of graphs.
These gave rise to the following results:

⊠ The strong product of two hamiltonian graphs is hamiltonian
decomposable (Zhou 1989, Fan and Liu 1998);

≀ The wreath product of two hamiltonian graphs is hamiltonian
decomposable (Baranyai and Szás, 1981);

□ The Cartesian product of two hamiltonian graphs is hamiltonian
decomposable under certain conditions (Stong, 1991).
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Hamiltonian decomposable directed graphs

We can also study directed hamiltonian decompositions of
digraphs:

1 the complete symmetric digraph K ∗
n is hamiltonian

decomposable for all n (Tilson, 1980);

2 the complete symmetric multipartite graph Kn[m] (Ng, 1997);

3 the symmetric directed hypercube is hamiltonian
decomposable (Stong, 2006);

4 the Cartesian product of two directed cycles is hamiltonian
decomposable if and only if very specific conditions are
satisfied (Keating, 1978).
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Decomposing products of directed graphs

For products of digraphs, less is known on their hamiltonian
decompositions:

⊠ the strong product of two hamiltonian digraph: ?;

≀ the wreath product of two hamiltonian digraphs is hamiltonian
decomposable: almost all cases solved (Ng 1998, L-M 2025+) ;

□ the Cartesian product of two hamiltonian digraphs: ?.
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Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if...

H
G
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Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if x = u and (y , v) ∈ A(H), or...

H
G
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Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if x = u and (y , v) ∈ A(H) or (x , u) ∈ A(G ).

H
G
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Wreath product

Definition

The wreath product of G and H, denoted G ≀H, is a digraph on
vertex set V (G )× V (H), where ((x , y), (u, v)) ∈ A(G ≀ H) if and
only if x = u and (y , v) ∈ A(H) or (x , u) ∈ A(G ).

H
G
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Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ≀ H also hamiltonian decomposable?
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Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ≀ H also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then G ≀ H is
also hamiltonian decomposable.
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Main problem

Question: Given two hamiltonian decomposable (directed)
graphs G and H, is G ≀ H also hamiltonian decomposable?

Theorem (Baranyai and Szás, 1981)

If G and H are hamiltonian decomposable graphs, then G ≀ H is
also hamiltonian decomposable.

Theorem (Ng, 1998)

If G and H are hamiltonian decomposable digraphs, |V (G )| is odd,
and |V (H)| > 2, then G ≀ H is also hamiltonian decomposable.
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Main question refined

Question: Given two hamiltonian decomposable digraphs
graphs G and H, such that |V (G )| is even, is G ≀ H also
hamiltonian decomposable?
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Summary of results

Theorem (L-M (2025+))

Let G and H be hamiltonian decomposable directed graphs such
that |V (H)| > 3 and |V (G )| is even. Then G ≀ H is hamiltonian
decomposable except possibly when

1 G is a directed cycle,
2 |V (H)| is even, and
3 H admits a decomposition into an odd number of directed

hamiltonian cycles.
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Special cases

Theorem

Let G be a hamiltonian decomposable graph of even order and let
m ⩾ 4. The digraph G ≀ C⃗m is hamiltonian decomposable.

Theorem

The digraphs C⃗n ≀ C⃗3 and C⃗n ≀ C⃗2 are not hamiltonian
decomposable when n is even.
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Special cases

Theorem

Let G be a hamiltonian decomposable graph of even order and let
m ⩾ 3. The digraph G ≀ K ∗

m is hamiltonian decomposable.
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Reduction

Proposition (Ng, 1998)

Let G and H be hamiltonian decomposable directed graphs such
that |V (G )| = n and |V (H)| = m. If

1 C⃗n ≀ H is hamiltonian decomposable,

2 and C⃗n ≀ Km are hamiltonian decomposable,
then G ≀ H is hamiltonian decomposable.
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Reduction

Lemma (Ng, 1998)

The digraph C⃗n ≀ Km is hamiltonian decomposable for all n,m ⩾ 2.

Conclusion: If we want to show that G ≀ C⃗m and G ≀ K ∗
m are

hamiltonian decomposable, it suffices to show that C⃗n ≀ C⃗m and
C⃗n ≀ K ∗

m are hamiltonian decomposable.
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Decomposition of C⃗n ≀ C⃗m

Proposition (L-M (2025))

Let n be even. The digraph C⃗n ≀ C⃗m is hamiltonian decomposable if
and only if m ⩾ 4.

The digraphs C⃗n ≀ C⃗2 and C⃗n ≀ C⃗3 are not hamiltonian decomposable.
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Decomposition of C⃗n ≀ C⃗3

Proposition (L-M (2025))

Let n be even. The digraph C⃗n ≀ C⃗3 is not hamiltonian
decomposable.

To describe the main idea behind our proof, we will look at the
construction of a decomposition of C⃗n ≀ Km into directed
hamiltonian cycles.
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

210

C⃗3

K 3
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

012

C⃗3

K 3

F0 = (id , id , (0, 1, 2))
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

012

C⃗3

K 3

F0 = (id , id , (0, 1, 2))

F1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1))
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The directed graph C⃗n ≀ Km

Lemma (Ng, 1998)

If m ⩾ 3, then C⃗n ≀ Km is hamiltonian decomposable.

012

C⃗3

K 3

F0 = (id , id , (0, 1, 2))

F1 = ((0, 1, 2), (0, 1, 2), (0, 2, 1))

F2 = ((0, 2, 1), (0, 2, 1), id)
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Hamiltonian decomposition of C⃗n ≀ Km

The existence of a hamiltonian decomposition of C⃗n ≀ Km is
equivalent to the existence of a set of m n-tuples of permutations
from Sm that satisfies a very specific set of conditions:

F =


(µ(0,0), µ(0,1), . . . , µ(0,n−1));
(µ(1,0), µ(1,1), . . . , µ(1,n−1));

...
(µ(m−1,0), µ(m−1,1), . . . , µ(m−1,n−1)).
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Back to C⃗n ≀ C⃗3

Proposition

If n is even, then C⃗n ≀ C⃗3 is not hamiltonian.

Proof:

1. We show that the existence of a hamiltonian decomposition of
C⃗n ≀ C⃗3 is equivalent to the existence of a set of four n-tuples of
elements of (Z2 ⊕Z2 ⊕Z2)⋊ S3 that must satisfy a very specific
set of conditions.

2. Then, we show that no such set of four n-tuples of elements of
(Z2 ⊕Z2 ⊕Z2)⋊ S3 exists.
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The digraph C⃗n ≀ C⃗m

Theorem

Let n ⩾ 4 be an even integer and let m ⩾ 4. The digraph C⃗n ≀ C⃗m

is hamiltonian decomposable.

We prove the statement by constructing the desired decomposition.
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The construction

Proof:

1

2

...

3
...

...
...

...
...

...

n − 2

n − 1

0

C⃗6

C⃗n

...

Figure: The wreath product C⃗n × C⃗6.
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The construction

Proof:

0

1

2

...

3
...

...
...

...
...

...

n − 2

n − 1

0

C⃗6

C⃗n

...

Figure: The wreath product C⃗n ≀ C⃗6 (n even).
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The construction

Proof:

0

1

2

...

3
...

...
...

...
...

...

n − 2

n − 1

0

C⃗6

C⃗n

...

Figure: Constructing the digraph C⃗n ≀ C⃗6 (non-horizontal arcs are oriented
downwards).
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The construction

Proof:

1

2

...

3
...

...
...

...
...

...

n − 2

n − 1

0

C⃗6

C⃗n

...

Figure: Constructing the digraph C⃗n ≀ C⃗6 (non-horizontal arcs are oriented
downwards).
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The construction

Proof:

If n ⩾ 4, then C⃗n × K ∗
m is hamiltonian decomposable (Paulraja and

Sivasankar, 2009).

⇒ C⃗n ≀ C⃗m is hamiltonian decomposable. □
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Decomposition of C⃗n ≀ K ∗
m

Proposition (L-M (2025))

Let n be even. The digraph C⃗n ≀K ∗
m is hamiltonian decomposable if

and only if (n,m) ̸= (2, 3).
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Decomposition of C⃗n ≀ K ∗
m

Proposition (L-M (2025))

Let n be even. The digraph C⃗n ≀K ∗
m is hamiltonian decomposable if

and only if (n,m) ̸= (2, 3).

The following result is a key tool in our construction.

Proposition (Tilson (1980))

Let m ⩾ 5. The digraph K ∗
m admits a decomposition into directed

hamiltonian paths.
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The construction

Proof:

0
0

1 2 3 4 5

1

...

2
...

...
...

...
...

n − 2

n − 1

0

Figure: We start with a hamiltonian dipath of K∗
m.
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The construction

Proof:

0
0

1 2 3 4 5 0

1

...

2
...

...
...

...
...

...n − 2

n − 1

0

Figure: We then construct a hamiltonian cycle of C⃗n ≀ K∗
6 .
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The construction

Proof:

2
0

0 4 3 5 1 0

1

...

2
...

...
...

...
...

...n − 2

n − 1

0

Figure: We construct a second directed hamiltonian cycle of C⃗n ≀ K∗
6 .
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The construction

Proof:

2
0

0 4 3 5 1 0

1

...

2
...

...
...

...
...

...n − 2

n − 1

0

Figure: The categorical product C⃗n ≀ K∗
6 .
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Open problems

Determine when C⃗n ⊠ C⃗m is hamiltonian decomposable;

Show that C⃗2 × K ∗
m is hamiltonian decomposable;

Show that C⃗n ≀ H is hamiltonian decomposable when n is even
and H is an even ordered hamiltonian decomposable digraph
that admits a decomposition into an odd number of cycles.
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Thank you


