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A simple example

The setting: Consider a conference with 16 participants. To
facilitate networking, the organizing committee decides to host 15
banquets. The banquet hall has 3 tables that seat 4,4, and 8
participants.

The problem: The organizing committee needs a set of 15 seating
arrangements (one for each banquet) such that each participant is
seated to the right of every other participants exactly once.

Is this possible?
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Construction of a seating arrangement

Figure: The 16 participants (one for each vertex).
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Construction of a seating arrangement

Figure: One seating arrangement with two tables of length 4 and one
table of length 8.
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Construction of a seating arrangement

Figure: One seating arrangement with two tables of length 4 and one
table of length 8.
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Construction of a seating arrangement

Figure: Another seating arrangement with two tables of length 4 and one
table of length 8.
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The directed Oberwolfach problem

The setting: Consider a conference with n participants. To
facilitate networking, the organizing committee decides to host
n − 1 banquets. The banquet hall has t round tables that sit
m1,m2, . . . ,mt participants such that m1 +m2 + · · ·+mt = n.

The problem: The organizing committee needs a set of n − 1
seating arrangements (one for each banquet) such that each
participant is seated to the right of every other participants
exactly once.

Is this possible?
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The complete symmetric digraph

Definition

The complete symmetric digraph, denoted K ∗
n , is the digraph

on n vertices in which for every pair of distinct vertices x and y ,
there are arcs (x , y) and (y , x).

Figure: The complete graph K4.
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The complete symmetric digraph

Definition

The complete symmetric digraph, denoted K ∗
n , is the digraph

on n vertices in which for every pair of distinct vertices x and y ,
there are arcs (x , y) and (y , x).

Figure: The complete symmetric digraph K∗
4 .
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2-factorization

Definition

A directed [m1,m2, . . . ,mt ]-factor of digraph G is a spanning
subdigraph comprised of disjoint directed cycles of length
m1,m2, . . . ,mt .

Definition

A directed [m1,m2, . . . ,mt ]-factorization of digraph G is a
decomposition of G into [m1,m2, . . . ,mt ]-factors.
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The graph-theoretic formulation of the directed OP

Problem (OP∗(m1,m2, . . . ,mt))

Let m1,m2, . . . ,mt ⩾ 2. If m1 +m2 + · · ·+mα = n, does K ∗
n

admit a directed [m1,m2, . . . ,mt ]-factorization?

When all tables are of length m, we write OP∗(mt).

A solution to OP∗(m1,m2, . . . ,mt) is also a resolvable Mendelsohn
design with blocks of size m1,m2, . . . ,mt .
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Background (free solutions!)

Corollary (Kadri and Šajna (2025))

If the original Oberwolfach problem with n participants and tables
of lengths 3 ⩽ m1 ⩽ m2 ⩽ · · · ⩽ mt with n being odd, then
OP∗(m1,m2, . . . ,mt) also has a solution.
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Background

Theorem (Bermond, Germa, and Sotteau (1979); Tillson (1980),
Bennett and Zhang (1990); Adams and Bryant (Unpublished);
Abel, Bennett, and Ge (2002); Burgess and Šajna (2014); Burgess,
Francetić, and Šajna (2018); L-M (2024))

The OP∗(mt) has a solution except when
(m, t) ̸∈ {(3, 2), (4, 1), (6, 1)}.

The directed OP has been completely resolved when all tables are
of the same length.
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Background

Theorem (Zhang and Du (2005))

The OP∗(3t , s) has a solution when s ∈ {4, 5} for all t ∈ Z+.

Theorem (Kadri and Šajna (2025))

Let m1 < m2. The OP∗(m1,m2) has a solution except possibly
when m1 ∈ {4, 6} and m2 is even.

Theorem (Horsley and L-M (2024+))

Let m1 < m2. The OP∗(m1,m2) has a solution when m1 ∈ {4, 6}
and m2 ⩾ 8 is even.
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Bipartite 2-factors

The original Oberwolfach problem has been completely resolved for
bipartite 2-factorizations.

Theorem (Häggkvist (1985))

The graph K2n − I admits an [m1,m2, . . .mt ]-factorization when
each mi is even, mi ⩾ 4, and 2n ≡ 2 (mod 4).

Note that K2n − I is the complete graph on 2n vertices with a
1-factor removed.
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Bipartite 2-factors

The original Oberwolfach problem has been completely resolved for
bipartite 2-factorizations.

Theorem (Häggkvist (1985))

The graph K2n − I admits an [m1,m2, . . .mt ]-factorization when
each mi is even, mi ⩾ 4, and 2n ≡ 2 (mod 4).

Theorem (Bryant and Danziger (2011))

The graph K2n − I admits an [m1,m2, . . .mt ]-factorization when
each mi is even, mi ⩾ 4, and 2n ≡ 0 (mod 4).

Note that K2n − I is the complete graph on 2n vertices with a
1-factor removed.
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Our results

Theorem (Burgess, Danziger, and L-M (2025+))

Let m1,m2, . . . ,mt be positive even integers and 2n ≡ 2 (mod 4),
then OP∗(m1,m2, . . . ,mt) has a solution except for OP∗(6).



On the directed Oberwolfach problem with tables of even lengths

Strategy

Step 1: Decompose K ∗
2n into n − 2 spanning subdigraphs that fall

into one of two isomorphisms classes G1 and G2.

Step 2: Show that G1 and G2 both admit a
[m1,m2, . . . ,mt ]-factorization.
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First class of digraphs

Below, we show a spanning digraph of K ∗
14.

x0 x1 x2 x3 x4 x5 x6 x0

y0 y1 y2 y3 y4 y5 y6 y0

Figure: The first directed graph G1 = C⃗7[2].
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First class of digraphs

x0 x1 x2 x3 x4 x5 x6 x0

y0 y1 y2 y3 y4 y5 y6 y0

Figure: The underlying graph of C⃗7[2] written C7[2].
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A directed version of Häggkvist Lemma

Theorem (Häggkvist Lemma (Häggkvist (1985)))

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 4. The graph
Cr [2] admits an undirected [m1,m2, . . . ,mt ]-factorization.
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A directed version of Häggkvist Lemma

Theorem (Häggkvist Lemma (Häggkvist (1985)))

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 4. The graph
Cr [2] admits an undirected [m1,m2, . . . ,mt ]-factorization.

Corollary

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 4. The graph
C⃗r [2] admits a [m1,m2, . . . ,mt ]-factorization.

We still need to derive a solution that includes tables of lengths
two!
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A directed version of Häggkvist Lemma

Lemma

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 2. The graph
C⃗r [2] admits a [m1,m2, . . . ,mt ]-factorization.

Proof: Case 1: We have k ⩾ 2 tables of length 2.

x0 x1 x2 x3 x4 x5 x6 x0

y0 y1 y2 y3 y4 y5 y6 y0

Figure: A undirected [4, 10]-factor of C7[2].
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A directed version of Häggkvist Lemma

Lemma

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 2. The graph
C⃗r [2] admits a [m1,m2, . . . ,mt ]-factorization.

Proof: Case 1: We have k ⩾ 2 tables of length 2.

x0 x1 x2 x3 x4 x5 x6 x0

y0 y1 y2 y3 y4 y5 y6 y0

Figure: A 1-factorization of C4 in blue and grey.
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A directed version of Häggkvist Lemma

Lemma

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 2. The graph
C⃗r [2] admits a [m1,m2, . . . ,mt ]-factorization.

Proof: Case 1: We have k ⩾ 2 tables of length 2.

x0 x1 x2 x3 x4 x5 x6 x0

y0 y1 y2 y3 y4 y5 y6 y0

Figure: A directed [2, 2, 10] factor of C⃗6[2].
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A directed version of Häggkvist Lemma

Lemma

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 2. The graph
C⃗r [2] admits a [m1,m2, . . . ,mt ]-factorization.

Proof: Case 1: We have k ⩾ 2 tables of length 2.

x0 x1 x2 x3 x4 x5 x6 x0

y0 y1 y2 y3 y4 y5 y6 y0

Figure: A directed [2, 2, 10] factor of C⃗6[2].
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A directed version of Häggkvist Lemma

Lemma

Let m1,m2, . . . ,mt be even integers such that mi ⩾ 2. The graph
C⃗r [2] admits a [m1,m2, . . . ,mt ]-factorization.

Proof: Case 2: We have one table of length 2.

Here an explicit construction is needed. The construction follows a
similar reasoning as Häggkvist’s lemma.

□
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The second spanning subdigraph of K ∗
2n

x0 x1 x2 x3 x4 x5 x6 x0 x1

y0 y1 y2 y3 y4 y5 y6 y0 y1

Figure: The underlying graph of G2.

Each edge represents a pair of arcs, one for each direction. This
underlying graph can be described as a wreath product
(lexicographic product) of the circulant X (n, {±1,±2}) with K2
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The construction of a [16, 12, 10]-factor of K ∗
38
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The construction of a [16, 12, 10]-factor of K ∗
38
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Long tables
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Figure: A cycle of length 8.
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Long tables
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Long tables
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Long tables
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Special cases- A [16,12,6,2,2]-factor
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Future work

Problem: Can we take a similar approach for the case
2n ≡ 0 (mod 4)?

Answer: Yes. However, the second spanning digraph in the
decomposition of K ∗

2n is different.

Figure: The underlying graph of G2.
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Thank you!


