Alice Lacaze-Masmonteil University of Ottawa

June 6, 2022

Acknowledgements

I would like to thank:

1 My supervisor Mateja Šajna;

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- **2** University of Ottawa;
- 3 NSERC.

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on *n* vertices in which for every pair of distinct vertices *x* and *y*, there are arcs (x, y) and (y, x).

Figure: The complete graph K_4 .

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on *n* vertices in which for every pair of distinct vertices x and y, there exist a (x, y) arc and a (y, x) arc.

Figure: The complete symmetric digraph K_4^* .

Wreath product

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if...

Wreath product

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if x = u and $(y, v) \in A(H)$, or...

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Wreath product

Definition

The wreath product of G and H, denoted $G \wr H$, is a digraph on vertex set $V(G) \times V(H)$, where $((x, y), (u, v)) \in A(G \wr H)$ if and only if x = u and $(y, v) \in A(H)$ or $(x, u) \in A(G)$.

Cycle decomposition

Definition

A \vec{C}_m -factor of digraph G is a spanning subdigraph of G that is the disjoint union of directed m-cycles.

Figure: A \vec{C}_5 -factor of K_{10}^* .

(日) (四) (日) (日) (日)

Definition

A decomposition of G is a set $\{H_1, H_2, ..., H_k\}$ of pairwise arc-disjoint subdigraphs of G such that $A(G) = A(H_1) \cup A(H_2) \cup ... \cup A(H_k).$

Definition

A decomposition of G is a set $\{H_1, H_2, ..., H_k\}$ of pairwise arc-disjoint subdigraphs of G such that $A(G) = A(H_1) \cup A(H_2) \cup ... \cup A(H_k)$. If such a decomposition exists, we write:

$$G = H_1 \oplus H_2 \oplus \ldots \oplus H_k.$$

Definition

A decomposition of G is a set $\{H_1, H_2, ..., H_k\}$ of pairwise arc-disjoint subdigraphs of G such that $A(G) = A(H_1) \cup A(H_2) \cup ... \cup A(H_k)$. If such a decomposition exists, we write:

$$G = H_1 \oplus H_2 \oplus \ldots \oplus H_k.$$

Definition

A \vec{C}_m -factorization (or resolvable \vec{C}_m -decomposition) of G, denoted $R\vec{C}_m$ -D, is a decomposition of G into \vec{C}_m -factors.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

The obvious necessary condition

Necessary condition:

If the digraph K_n^* admits an $R\vec{C}_m$ -D, then *n* is divisible by *m*.

Introduction

The obvious necessary condition

Necessary condition:

If the digraph K_n^* admits an $R\vec{C}_m$ -D, then *n* is divisible by *m*.

Problem

To find all integers α and m for which $K^*_{\alpha m}$ admits an $R\vec{C}_m$ -D.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Theorem (Bermond, Germa, and Sotteau, 1979)

The digraph $K_{3\alpha}^*$ admits an $R\vec{C}_3$ -D if and only if $\alpha \neq 2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Bermond, Germa, and Sotteau, 1979)

The digraph $K_{3\alpha}^*$ admits an $R\vec{C}_3$ -D if and only if $\alpha \neq 2$.

Theorem (Bennett and Zhan, 1990; Adams and Bryant, Unpublished)

The directed graph $K_{4\alpha}^*$ admits an $R\vec{C}_4$ -D if and only if $\alpha \neq 1$.

Theorem (Bermond, Germa, and Sotteau, 1979)

The digraph $K_{3\alpha}^*$ admits an $R\vec{C}_3$ -D if and only if $\alpha \neq 2$.

Theorem (Bennett and Zhan, 1990; Adams and Bryant, Unpublished)

The digraph $K_{4\alpha}^*$ admits an $R\vec{C}_4$ -D if and only if $\alpha \neq 1$.

Theorem (Burgess and Šajna, 2014)

If m is even or α is odd, then $K^*_{\alpha m}$ admits an $R\vec{C}_m$ -D.

Theorem (Burgess and Šajna, 2014)

Suppose that α is an even integer and m is an odd integer. If K_{2m}^* admits an $R\vec{C}_m$ -D, then $K_{\alpha m}^*$ also admits an $R\vec{C}_m$ -D.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Burgess and Šajna, 2014)

Suppose that α is an even integer and m is an odd integer. If K_{2m}^* admits an $R\vec{C}_m$ -D, then $K_{\alpha m}^*$ also admits an $R\vec{C}_m$ -D.

Conjecture (Burgess and Šajna, 2014)

If m is odd and $m \ge 5$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Theorem (Burgess and Šajna, 2014)

Suppose that α is an even integer and m is an odd integer. If K_{2m}^* admits an $R\vec{C}_m$ -D, then $K_{\alpha m}^*$ also admits an $R\vec{C}_m$ -D.

Conjecture (Burgess and Šajna, 2014)

If m is odd and $m \ge 5$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Theorem (Burgess, Francetić, and Šajna, 2018)

If m is odd and $5 \leq m \leq 49$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

- Introduction

Result

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Let p be an odd prime such that $p \equiv 5 \pmod{6}$ or p < 50. If m is an odd multiple of p and $m \neq 3$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Outline:

• We take a reduction step that narrows down this problem to $m \equiv 1,5 \pmod{6}$ and m is prime.

-Introduction

Result

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Let p be an odd prime such that $p \equiv 5 \pmod{6}$ or p < 50. If m is an odd multiple of p and $m \neq 3$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Outline:

- We take a reduction step that narrows down this problem to $m \equiv 1,5 \pmod{6}$ and m is prime.
- For all $m \equiv 5 \pmod{6}$, we construct an $\mathsf{R}\vec{C}_m$ -D of K^*_{2m} .

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: First, we decompose K_{2m}^* into the following digraphs:

$$K_{2m}^* = K_{2t}^* \wr K_s^*;$$

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: First, we decompose K_{2m}^* into the following digraphs: $\begin{aligned}
\mathcal{K}_{2m}^* &= \mathcal{K}_{2t}^* \wr \mathcal{K}_s^*; \\
&= (\underbrace{2\vec{C_t} \oplus 2\vec{C_t} \oplus \ldots \oplus 2\vec{C_t}}_{2t-1}) \wr \mathcal{K}_s^*;
\end{aligned}$

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: First, we decompose K_{2st}^* into the following digraphs: $K_{2m}^* = K_{2t}^* \wr K_s^*;$ $= (\underbrace{2\vec{C}_t \oplus 2\vec{C}_t \oplus \ldots \oplus 2\vec{C}_t}_{2t-1}) \wr K_s^*;$ $= (2\vec{C}_t) \wr K_s^* \oplus \underbrace{(2\vec{C}_t) \wr \overline{K}_s \oplus \ldots \oplus (2\vec{C}_t) \wr \overline{K}_s}_{2t-2}.$

Example:
$$V(K_{10s}^*) = V(K_s^*) \dot{\cup} V(K_s^*) \dot{\cup} \dots \dot{\cup} V(K_s^*)$$

Figure: Partition of $V(K_{10s}^*)$ into 10 sets of $V(K_s^*)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Figure: A \vec{C}_5 -factor of K_{10}^* .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$K_{10s}^* = (2\vec{C}_5) \wr K_s^* \oplus \ldots$$

Figure: The subdigraph $(2\vec{C_5}) \wr K_s^*$ of K_{10s}^* .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$K_{10s}^* = (2\vec{C_5}) \wr K_s^* \oplus (2\vec{C_5}) \wr \overline{K}_s \dots$$

Figure: The subdigraph $(2\vec{C_5}) \wr \vec{K_s}$ of K_{10s}^* .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof:

$$\mathcal{K}_{2m}^* = (2\vec{C}_t) \wr \mathcal{K}_s^* \oplus \underbrace{(2\vec{C}_t) \wr \overline{\mathcal{K}}_s \oplus \ldots \oplus (2\vec{C}_t) \wr \overline{\mathcal{K}}_s}_{2t-2}.$$

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof:

$$\mathcal{K}_{2m}^* = (2\vec{C}_t) \wr \mathcal{K}_s^* \oplus \underbrace{(2\vec{C}_t) \wr \overline{\mathcal{K}}_s \oplus \ldots \oplus (2\vec{C}_t) \wr \overline{\mathcal{K}}_s}_{2t-2}.$$

The digraph $(2\vec{C}_t) \wr K_s^*$ admits an $R\vec{C}_{st}$ -D (Ng, 1998).

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof:

$$K_{2m}^* = (2\vec{C}_t) \wr K_s^* \oplus \underbrace{(2\vec{C}_t) \wr \overline{K}_s \oplus \ldots \oplus (2\vec{C}_t) \wr \overline{K}_s}_{2t-2}.$$

1. The digraph $(2\vec{C}_t) \wr K_s^*$ admits an $R\vec{C}_{st}$ -D (Ng, 1998).

2. The digraph $(2\vec{C}_t) \wr \overline{K}_s$ also admits an $R\vec{C}_{st}$ -D (Ng, 1998).

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof:

$$\mathcal{K}_{2m}^* = (2\vec{C}_t) \wr \mathcal{K}_s^* \oplus \underbrace{(2\vec{C}_t) \wr \overline{\mathcal{K}}_s \oplus \ldots \oplus (2\vec{C}_t) \wr \overline{\mathcal{K}}_s}_{2t-2}.$$

1. The digraph $(2\vec{C}_t) \wr K_s^*$ admits an $R\vec{C}_{st}$ -D (Ng, 1998).

2. The digraph $(2\vec{C}_t) \wr \vec{K}_s$ also admits an $R\vec{C}_{st}$ -D (Ng, 1998).

$$\Rightarrow K_{2m}^*$$
 admits an $R\vec{C}_m$ -D.

Proposition

Let t and s be odd integers such that t, $s \ge 3$, t is prime and m = st. If the graph K_{2t}^* admits an $R\vec{C}_t$ -D, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Conclusion: To construct an $R\vec{C}_m$ -D of K_{2m}^* , it suffices to construct an $R\vec{C}_t$ -D of K_{2t}^* for t a prime factor of m.

The case $m \equiv 5 \pmod{6}$

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

If $m \equiv 5 \pmod{6}$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Outline:

• We prove that it suffices to construct a set of 3 \vec{C}_m -factors with a particular property.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

If $m \equiv 5 \pmod{6}$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Outline:

• We prove that it suffices to construct a set of 3 \vec{C}_m -factors with a particular property.

• We then construct such a set 3 \vec{C}_m -factors.

The case $m \equiv 5 \pmod{6}$

Labeling the arcs of K_n^* .

1. Let $V(K_n^*) = \mathbb{Z}_{n-1} \cup \{\infty\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

L The case $m \equiv 5 \pmod{6}$

Labeling the arcs of K_n^* .

2. Each arc (x, y) is assigned difference base-3, d_i , where $d = y - x \pmod{n-1}$ and ...

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

L The case $m \equiv 5 \pmod{6}$

Labeling the arcs of K_n^* .

2. Each arc (x, y) is assigned difference base-3, d_i , where $d = y - x \pmod{n-1}$ and $i \equiv x \pmod{3}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

The case $m \equiv 5 \pmod{6}$

Definition

A set \mathcal{F} of 3 \vec{C}_m -factors of K_{2m}^* is 3-complete if each arc in \mathcal{F} has a distinct base-3 difference.

The case $m \equiv 5 \pmod{6}$

Definition

A set \mathcal{F} of 3 \vec{C}_m -factors of K_{2m}^* is 3-**complete** if each arc in \mathcal{F} has a distinct base-3 difference.

Theorem

If K_{2m}^* admits a set of 3-complete \vec{C}_m factors, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Definition

A set \mathcal{F} of 3 \vec{C}_m -factors of K_{2m}^* is 3-**complete** if each arc in \mathcal{F} has a distinct base-3 difference.

Theorem

If K_{2m}^* admits a set of 3-complete \vec{C}_m -factors, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: Let $V(K_{2m}^*) = \mathbb{Z}_{2m-1} \cup \{\infty\}$. Define the following permutation:

$$\sigma = (\infty)(0,3,6,\ldots,2m-4)(1,4,7\ldots,2m-3)(2,5,8,\ldots,2m-2).$$

Note that $2m-1 \equiv 0 \pmod{3}$.

Definition

A set \mathcal{F} of 3 \vec{C}_m -factors of K_{2m}^* is 3-**complete** if each arc in \mathcal{F} has a distinct base-3 difference.

Theorem

If K_{2m}^* admits a set of 3-complete \vec{C}_m factors, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: Let $V(K_{2m}^*) = \mathbb{Z}_{2m-1} \cup \{\infty\}$. Define the following permutation:

$$\sigma = (\infty)(0,3,6,\ldots,2m-4)(1,4,7\ldots,2m-3)(2,5,8,\ldots,2m-2).$$

• σ acts on the set of arcs as follows: $\sigma(x, y) = (x + 3, y + 3)$,

●●● Ⅲ → Ⅲ → Ⅲ → ■ → ●●●

Definition

A set \mathcal{F} of 3 \vec{C}_m -factors of K_{2m}^* is 3-complete if each arc in \mathcal{F} has a distinct base-3 difference.

Theorem

If K_{2m}^* admits a set of 3-complete \vec{C}_m factors, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: Let $V(K_{2m}^*) = \mathbb{Z}_{2m-1} \cup \{\infty\}$. Define the following permutation:

$$\sigma = (\infty)(0,3,6,\ldots,2m-4)(1,4,7\ldots,2m-3)(2,5,8,\ldots,2m-2).$$

• σ acts on the set of arcs as follows: $\sigma(x, y) = (x + 3, y + 3)$,

• Two arcs are in the same orbit if and only if they have the same base-3 difference.

Theorem

If K_{2m}^* admits a set of 3-complete \vec{C}_m -factors, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: Let $V(K_{2m}^*) = \mathbb{Z}_{2m-1} \cup \{\infty\}$. Define the following permutation: $\sigma = (\infty)(0,3,6,...,2m-4)(1,4,7,...,2m-3)(2,5,8,...,2m-2)$.

Figure: A \vec{C}_5 -factor F_0 of K_{10}^* .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

If K_{2m}^* admits a set of 3-complete \vec{C}_m -factors, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: Let $V(K_{2m}^*) = \mathbb{Z}_{2m-1} \cup \{\infty\}$. Define the following permutation: $\sigma = (\infty)(0,3,6,...,2m-4)(1,4,7,...,2m-3)(2,5,8,...,2m-2)$.

Figure: The \vec{C}_5 -factor $\sigma(F_0)$.

Theorem

If K_{2m}^* admits a set of 3-complete \vec{C}_m -factors, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Proof: Let $V(K_{2m}^*) = \mathbb{Z}_{2m-1} \cup \{\infty\}$. Define the following permutation:

$$\sigma = (\infty)(0, 3, 6, \dots, 2m-4)(1, 4, 7, \dots, 2m-3)(2, 5, 8, \dots, 2m-2).$$

If $\{F_0, F_1, F_2\}$ is a 3-complete set of $\vec{C_m}$ -factors of K_{2m}^* , then:

$$\{\sigma^k(F_i): k = 0, 1, \dots, \frac{2m-4}{3}, i = 0, 1, 2\}$$

is a \vec{C}_m -factorization of K_{2m}^* .

L The case $m \equiv 5 \pmod{6}$

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Suppose that $m \equiv 5 \pmod{6}$. The digraph K_{2m}^* admits a set of 3-complete \vec{C}_m -factors.

- The case $m \equiv 5 \pmod{6}$

Figure: A \vec{C}_{23} -factor of K_{46}^* .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

L The case $m \equiv 5 \pmod{6}$

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Suppose that $m \equiv 5 \pmod{6}$. The digraph K_{2m}^* admits a set of 3-complete \vec{C}_m -factors.

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Suppose that $m \equiv 5 \pmod{6}$. The digraph K_{2m}^* admits an $R\vec{C}_m$ -D.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Conclusion

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Let p be an odd prime such that $p \equiv 5 \pmod{6}$ or p < 50. If m is an odd multiple of p, and $m \neq 3$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

- Conclusion

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Let p be an odd prime such that $p \equiv 5 \pmod{6}$ or p < 50. If m is an odd multiple of p, and $m \neq 3$, then K_{2m}^* admits an $R\vec{C}_m$ -D.

Theorem (Lacaze-Masmonteil and Šajna, 2022+)

Let α be a positive even integer and p be an odd prime such that $p \equiv 5 \pmod{6}$ or p < 50. If m is an odd multiple of p, and $m \neq 3$, then $K_{\alpha m}^*$ admits an $R\vec{C}_m$ -D.

Conclusion

Thank you!

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ