On the two-table case of the directed Oberwolfach problem

Alice Lacaze-Masmonteil University of Regina

Joint work with Daniel Horsley (Monash University) November 6, 2024

The Oberwolfach problem

The setting: Consider a conference with 7 participants. To facilitate networking, the organizing committee decides to host 3 banquets. The banquet hall has 2 round tables that sit 4 and 3 people, respectively.

The problem: The organizing committee needs a set of 3 seating arrangements (one for each banquet) such that each participant is seated beside every other participants exactly once.

Is this possible?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Figure: The complete graph on 7 vertices, K_7 .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Figure: The first seating arrangement.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣 ─

Figure: The complete K_7 minus 1 seating arrangement.

Figure: The second seating arrangement.

Figure: The third seating arrangement.

The Oberwolfach problem-general case

The setting: Consider a conference with n = 2k + 1 participants. The organizing committee decides to host k banquets. The banquet hall has α round tables that sit $m_1, m_2, \ldots, m_{\alpha}$ participants, respectively, such that $m_1 + m_2 + \cdots + m_{\alpha} = n$ and each $m_i \ge 3$.

The problem: The organizing committee needs a set of k seating arrangements (one for each banquet) such that each participant is seated beside every other participants exactly once.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Is this possible?

Terminology

Definition

A **decomposition** of a graph *G* is a set of subgraphs $\{H_1, H_2, \ldots, H_k\}$ such that each edge of *G* appears in exactly one subgraph. We then write $G = H_1 \oplus H_2 \oplus \cdots \oplus H_k$.

Figure: A decomposition of K_7 into copies of C_7 . We see that $K_7 = C_7 \oplus C_7 \oplus C_7$.

Terminology

Definition

A $[m_1, m_2, \ldots, m_\alpha]$ -factor of G is a spanning subgraph of G comprised to α disjoint cycles of lengths $m_1, m_2, \ldots, m_\alpha$.

Figure: A [3, 4]-factor of K_7 .

Terminology

Definition

A $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization of G is a decomposition of G into $[m_1, m_2, \ldots, m_{\alpha}]$ -factors.

Figure: A [3, 4]-factorization of K_7 .

The graph-theoretic formulation of the OP

Problem

Let n = 2k + 1 and $m_1 + m_2 + \cdots + m_{\alpha} = n$. Does the graph K_n admit a $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization?

The generalized Oberwolfach problem

What if n = 2k?

Figure: The complete graph on 8 vertices, K_8 .

The generalized Oberwolfach problem

What if n = 2k?

Figure: A 1-factor (perfect matching) of K_8 drawn in grey.

The generalized Oberwolfach problem

What if n = 2k?

Figure: The graph $K_8 - I$.

The graph-theoretic formulation of the OP

Problem (OP $(m_1, m_2, \ldots, m_\alpha)$)

Let $m_1 + m_2 + \cdots + m_{\alpha} = n$. If *n* is odd, does the graph K_n admit a $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization? If *n* is even, does the graph $K_n - I$ admit a $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization?

If $m_1 = m_2 = \cdots = m_\alpha = m$, then we write $OP(m^\alpha)$.

Hamiltonian decomposition of K_n

Theorem (Walecki (1892))

The OP(n) has a solution for all n.

This is a decomposition of K_n or $K_n - I$ into C_n which is also known as a Hamiltonian decomposition.

The Oberwolfach problem with tables of length m

Theorem (Jiaxi (1961), Ray-Chaudhuri and Wilson (1973), Kotzig and Rosa (1974), Baker and Wilson (1977), Brouwer (1978), Rees and Stinson (1987))

The $OP(3^{\alpha})$ has a solution if and only if $\alpha \notin \{2,4\}$

Theorem (Walecki (1892), Alspach and Häggkvist(1985), Alspach et al. (1989), Hoffman and Schellenberg (1991))

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If $m \ge 4$, then $OP(m^{\alpha})$ has a solution.

The Oberwolfach problem with tables of varying lengths

Theorem (Haggkvist (1985), Bryant and Danziger (2010))

The $OP(m_1, m_2, ..., m_\alpha)$ has a solution when $m_1, m_2, ..., m_\alpha$ are all even.

Theorem (Gvozdjak (2004) and Traetta (2013))

The $OP(m_1, m_2)$ has a solution if and only if $(m_1, m_2) \notin \{(3, 3), (4, 5)\}.$

Theorem (Traetta (2024))

The $OP(m_1, m_2, ..., m_\alpha)$ when one of $m_1, m_2, ..., m_\alpha$ is sufficiently greater than an explicit lower bound.

The Oberwolfach problem with tables of varying lengths

Theorem (Bryant and Scharaschkin (2009))

The $OP(m_1, m_2, ..., m_{\alpha})$ has a solution for infinitely many primes $n \equiv 1 \pmod{16}$.

Theorem (Alspach et al. (2016))

The $OP(m_1, m_2, ..., m_{\alpha})$ has a solution when n = 2p where p is prime and $p \equiv 5 \pmod{8}$.

Computational results

Theorem (P. Adams and D. Bryant (2006); A. Deza et al. (2010), F. Franek et al. (2004); F. Franek and A. Rosa.(2006); F. Salassa et al. (2021); M. Meszka (2024))

The $OP(m_1, m_2, ..., m_{\alpha})$ has a solution for $n \leq 100$ except for $OP(3^2), OP(3^4), OP(4,5)$, and OP(3,3,5).

Probabilistic approach

Theorem (Glock et al. (2021))

The $OP(m_1, m_2, ..., m_{\alpha})$ has a solution for n sufficiently large.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The directed Oberwolfach problem

The setting: Consider a conference with *n* participants. To facilitate networking, the organizing committee decides to host n-1 banquets. The banquet hall has α round tables that sit $m_1, m_2, \ldots, m_{\alpha}$ participants such that $m_1 + m_2 + \cdots + m_{\alpha} = n$.

The problem: The organizing committee needs a set of n-1 seating arrangements (one for each banquet) such that each participant is seated **to the right** of every other participants exactly once.

(日)(1)</

Is this possible?

A simple example

A simple example

Figure: One seating arrangement with one table of length 4 and one table of length 8.

A simple example

Figure: One seating arrangement with one table of length 4 and one table of length 8.

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on *n* vertices in which for every pair of distinct vertices *x* and *y*, there are arcs (x, y) and (y, x).

Figure: The complete graph K_4 .

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on *n* vertices in which for every pair of distinct vertices *x* and *y*, there are arcs (x, y) and (y, x).

Figure: The complete symmetric digraph K_4^* .

Cycle decomposition

Definition

A \vec{C}_m -factor of digraph G is a spanning subdigraph of G that is the disjoint union of directed *m*-cycles.

Figure: A \vec{C}_5 -factor of K_{10}^* .

Cycle decomposition

Definition

A \vec{C}_m -factor of digraph G is a spanning subdigraph of G that is the disjoint union of directed *m*-cycles.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Definition

A \vec{C}_m -factorization of G is a decomposition of G into \vec{C}_m -factors.

$[m_1, m_2, \ldots, m_{\alpha}]$ -factorization

Definition

A directed $[m_1, m_2, \ldots, m_\alpha]$ -factor of digraph G is a spanning subdigraph comprised of disjoint directed cycles of length $m_1, m_2, \ldots, m_\alpha$.

Definition

A directed $[m_1, m_2, ..., m_\alpha]$ -factorization of digraph G is a decomposition of G into $[m_1, m_2, ..., m_\alpha]$ -factors.

The graph-theoretic formulation of the directed OP

Problem (OP* $(m_1, m_2, \ldots, m_\alpha)$)

Let $m_1, m_2, \ldots, m_\alpha \ge 2$. If $m_1 + m_2 + \cdots + m_\alpha = n$, does K_n^* admit a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization?

Why are we not considering two different cases based on the parity of n?

Figure: The complete graph K_4 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The graph-theoretic formulation of the directed OP

Problem (OP* $(m_1, m_2, \ldots, m_\alpha)$)

Let $m_1, m_2, \ldots, m_\alpha \ge 2$. If $m_1 + m_2 + \cdots + m_\alpha = n$, does K_n^* admit a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization?

Why are we not considering two different cases based on the parity of n?

Figure: The complete symmetric digraph K_4^* .

Easy consequences

Corollary (Kadri and Šajna (2024+))

If $(m_1, m_2, \ldots, m_\alpha) \notin \{(4, 5), (3, 3, 5)\}$, then $OP^*(m_1, m_2, \ldots, m_\alpha)$ has a solution in each of the following cases:

•
$$m_1 = m_2 = \cdots = m_t;$$

$$t = 2.$$

We generally consider the case n is even because, when n is odd, a solution to the directed OP can be obtained by orienting a solution to the original OP.

Directed Oberwolfach problem with tables of uniform length

Problem (The directed Oberwolfach problem with tables of uniform length)

To find all integers α and m for which $K^*_{\alpha m}$ admits a \vec{C}_m -factorization.

Observe that α =number of cycles in a \vec{C}_m -factor.

Previous results (small *m* or α)

The digraph $K^*_{\alpha m}$ admits a \vec{C}_m -factorization when:

- m = 3 and $\alpha \neq 2$ (Bermond et al. (1979));
- $\alpha = 1$ and $m \notin \{4, 6\}$ (Tillson (1980));
- m = 4 and α ≠ 1 (Bennett and Zhang (1990); Adams and Bryant, Unpublished);

• m = 5 and $\alpha \ge 103$ (Abel et al. (2002)).

Previous results (general *m*)

Theorem (Burgess and Šajna, 2014)

If m is even or α is odd, such that $(\alpha, m) \notin \{(1, 6), (1, 4)\}$, then $K^*_{\alpha m}$ admits a \vec{C}_m -factorization.

We have a solution when tables are of even length or when we have an odd number of tables.

Previous results (general *m*)

What if we have an even number of tables of odd length?

Theorem (Burgess and Šajna, 2014)

Suppose that α is an even integer and $m \ge 3$ is an odd integer. If K_{2m}^* admits a \vec{C}_m -factorization, then $K_{\alpha m}^*$ also admits a \vec{C}_m -factorization.

It suffices to solve our problem when we have seating arrangements with two tables of odd length.

Previous results (general *m*)

Conjecture (Burgess and Šajna, 2014)

If m is odd and $m \ge 5$, then K_{2m}^* admits a \vec{C}_m -factorization.

Theorem (Burgess, Francetić, and Šajna, 2018)

If m is odd and $5 \leq m \leq 49$, then K_{2m}^* admits a \vec{C}_m -factorization.

New Result

Theorem (L-M, 2024)

The digraph K_{2m}^* admits a \vec{C}_m -factorization for all odd $m \ge 11$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Tools

Lemma (Burgess and Šajna, 2014)

Let $\{G_1, G_2, \ldots, G_t\}$ be a decomposition of H into spanning subdigraphs. If each G_i admits a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization, then H admits a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization.

Proof Let D_i be the $[m_1, m_2, ..., m_{\alpha}]$ -factorization of G_i . We see that

$$\mathcal{F} = \bigcup_{i=1}^t D_i$$

is a $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization of H. \Box

Step 1: Strategically decompose (di)graph G into t spanning sub(di)graphs that fall into r isomorphisms classes: H_1, H_2, \ldots, H_r .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Step 2: Show that each isomorphism class admits the desired $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization.

Häggkvist style constructions

Theorem (Haggkvist (1985))

The $OP(m_1, m_2, ..., m_\alpha)$ has a solution when $m_1, m_2, ..., m_\alpha$ are all even and $n \equiv 2 \pmod{4}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Häggkvist style constructions

Lemma (Häggkvist (1985))

If m is odd, $K_{2m} - I$ admits a decomposition into $\frac{m-1}{2}$ copies of $C_m \wr \overline{K}_2$.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Häggkvist style constructions

Lemma (Häggkvist (1985))

If m is odd, $K_{2m} - I$ admits a decomposition into $\frac{m-1}{2}$ copies of $C_m \wr \overline{K}_2$.

Proof: We know that K_m admits a decomposition into $\frac{m-1}{2}$ copies of C_m when *m* is odd.

We also know that $K_{2m} - I = K_m \wr \overline{K}_2$.

$$K_m \wr \overline{K}_2 = (C_m \oplus C_m \oplus \cdots \oplus C_m) \wr \overline{K}_2$$

= $C_m \wr \overline{K}_2 \oplus C_m \wr \overline{K}_2 \oplus \cdots \oplus C_m \wr \overline{K}_2.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma (Häggkvist Lemma (1985))

Let $m_1, m_2, \ldots, m_{\alpha}$ be even integers greater than 2 such that $m_1 + m_2 + \cdots + m_{\alpha} = 2m$. The graph $C_m \wr \overline{K}_2$ admits a $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization for all $m \ge 2$.

Lemma (Häggkvist Lemma (1985))

Let $m_1, m_2, \ldots, m_{\alpha}$ be even integers greater than 2 such that $m_1 + m_2 + \cdots + m_{\alpha} = 2m$. The graph $C_m \wr \overline{K}_2$ admits a $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization for all $m \ge 2$.

Figure: A [4, 10]-factor of $C_m \wr \overline{K}_2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma (Häggkvist Lemma (1985))

Let $m_1, m_2, \ldots, m_{\alpha}$ be even integers greater than 2 such that $m_1 + m_2 + \cdots + m_{\alpha} = 2m$. The graph $C_m \wr \overline{K}_2$ admits a $[m_1, m_2, \ldots, m_{\alpha}]$ -factorization for all $m \ge 2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Step 1: Decompose K_{2m}^* into $\frac{m-1}{2}$ spanning subdigraphs that fall into one of three isomorphisms classes: G_1, G_2 , and G_3 .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Step 2: Show that G_1 , G_2 , and G_3 admit a \vec{C}_m -factorization.

Decomposition of K_{2m}^*

Figure: The spanning digraph $G_1 = \vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Figure: A \vec{C}_m -factorization of G_1 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Result

Proposition

Let $m \ge 3$ be an odd integer. The digraph $\vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$ admits a \vec{C}_m -factorization.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Decomposition of K_{2m}^*

Figure: The spanning digraph $G_2 = \vec{X}(\{1,3\},13) \wr \overline{K}_2$ of $K^*_{2(13)}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Key ingredients

Figure: A \vec{C}_{13} -factorization of $\vec{X}(\{1,3\},m)$ when m = 13.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Key ingredients

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Key ingredients

(日) (四) (日) (日) (日)

Result

Proposition

Let $m \ge 3$ be an odd integer. The digraph $\vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$ admits a \vec{C}_m -factorization.

Proposition

Let $m \ge 11$ be an odd integer. The digraph $\vec{X}(\{1,3\},m) \wr \overline{K}_2$ admits a \vec{C}_m -factorization if and only if $m \ne 3 \pmod{6}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Decomposition of K_{2m}^*

Figure: The spanning digraph $G_3 = \vec{X}(\{1,3\},13) \wr K_2^*$ of $K_{2(13)}^*$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Figure: A \vec{C}_{25} -factor of G_3 when m = 25.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Result

Proposition

Let $m \ge 3$ be an odd integer. The digraph $\vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$ admits a \vec{C}_m -factorization.

Proposition

Let $m \ge 11$ be an odd integer. The digraph $\vec{X}(\{1,3\},m) \wr \overline{K}_2$ admits a \vec{C}_m -factorization if and only if $m \not\equiv 3 \pmod{6}$.

Proposition

Let $m \ge 11$ be an odd integer such that $m \equiv 1,5 \pmod{6}$. The digraph $\vec{X}(\{1,3\},m) \wr K_2^*$ admits a \vec{C}_m -factorization.

Summary

Proposition

The digraph K_{2m}^* admits a decomposition into 1 $\frac{m-5}{2}$ copies of $\vec{X}(\{\pm 1\}, m) \wr \overline{K}_2;$ 2 one copy of $\vec{X}(\{1,3\}, m) \wr \overline{K}_2;$ 3 one copy of $\vec{X}(\{1,3\}, m) \wr K_2^*.$

Theorem (L-M, (2024))

If $m \equiv 1,5 \pmod{6}$ and $m \ge 11$ then K_{2m}^* admits a \vec{C}_m -factorization.

Reduction step

Proposition

If K_{2m}^* admits a \vec{C}_m -factorization, then $K_{2(3^tm)}^*$ admits a \vec{C}_{3^tm} -factorization where t is a positive integer.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If
$$m' \equiv 3 \pmod{6}$$
 then:

$$\bullet m' = 3^t \cdot m \text{ where } m \equiv 1,5 \pmod{6}.$$

Reduction step

Proposition

If K_{2m}^* admits a \vec{C}_m -factorization, then $K_{2(3^tm)}^*$ admits a \vec{C}_{3^tm} -factorization where t is a positive integer.

If $m' \equiv 3 \pmod{6}$ then:

• $m' = 3^t \cdot m$ where $m \equiv 1, 5 \pmod{6}$.

When $m \equiv 1,5 \pmod{6}$ and $m \ge 5$, we obtain a $\vec{C}_{m'}$ -factorization of $K_{2m'}^*$ using a \vec{C}_m -factorization of K_{2m}^* .

When m = 1, we use a \vec{C}_9 -factorization of K_{18}^* .

Main result

Theorem (L-M, (2024))

The digraph K_{2m}^* admits a \vec{C}_m -factorization for all odd $m \ge 11$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A complete solution

Theorem

The digraph $K^*_{\alpha m}$ admits \vec{C}_m -factorization if and only if $(\alpha, m) \notin \{(1, 6), (2, 3), (1, 4)\}.$

The theorem above is a result of the work of: Bermond and Faber (1976); Bermond, Germa, and Sotteau (1979); Tillson (1980); Bennett and Zhang (1990); Adams and Bryant (Unpublished); Abel, Bennett, and Ge (2002); Burgess and Šajna (2014); Burgess, Francetić, and Šajna (2018); L-M (2024).

The directed Oberwolfach problem with tables of varying lengths

Using a recursive approach, Kadri and Šajna (2024+) obtain several infinite families of solution to $OP^*(m_1, m_2, ..., m_{\alpha})$.

Furthermore, they establish the existence of solutions for $n \leq 14$ except for three already known exceptions.

Theorem (Kadri and Šajna (2024+)

The $OP^*(m_1, m_2, ..., m_{\alpha})$ has a solution for $n \leq 14$ except for $OP^*(4^1), OP^*(6^1), OP^*(3^2)$.

A key corollary

Theorem (Kadri and Šajna (2024+))

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution except possibly when $m_1 \in \{4, 6\}$ and m_2 is even.

Idea: Take a solution to $OP^*(m_1^1)$ and construct a solution to $OP^*(m_1, m_2)$. **Problem:** $OP^*(4^1)$ and $OP^*(6^1)$ do not have a solution (Bermond and Faber (1976)).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Result on two tables

Theorem (Horsley and L-M (2024+))

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution when $m_1 \in \{4, 6\}$ and m_2 is even.

We construct an $[m_1, m_2]$ -factorization of K_n^* when $m_1 + m_2 = n$, $m_1 \in \{4, 6\}$, and m_2 is even.

Step 1: Decompose K_{2m}^* into $\frac{m-1}{2}$ spanning subdigraphs that fall into one two isomorphisms classes: G_1 and G_2 .

Step 2: Show that G_1 and G_2 both admit a $[m_1, m_2]$ -factorization.

The first class of digraphs

Figure: The spanning digraph $G_1 = \vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The second class of digraph

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Each edge represents a pair of arcs, one for each direction.

A complete solution

Theorem (Kadri and Šajna (2024+) and Horsley and L-M (2024+))

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution.

We have a complete solution to the directed Oberwolfach problem with two tables.

Next step: To generalize our methods to obtain a solution to $OP^*(m_1, m_2, ..., m_\alpha)$ for any even integers $m_1, m_2, ..., m_\alpha$ and $n \equiv 0, 2 \pmod{4}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Thanks!

