On the two-table case of the directed Oberwolfach problem

Alice Lacaze-Masmonteil University of Regina

Joint work with Daniel Horsley (Monash University) November 6, 2024

The Oberwolfach problem

The setting: Consider a conference with 7 participants. To facilitate networking, the organizing committee decides to host 3 banquets. The banquet hall has 2 round tables that sit 4 and 3 people, respectively.

The problem: The organizing committee needs a set of 3 seating arrangements (one for each banquet) such that each participant is seated beside every other participants exactly once.

KORKARYKERKER POLO

Is this possible?

KO K K Ø K K E K K E K V K K K K K K K K K

Figure: The complete graph on 7 vertices, K_7 .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Figure: The first seating arrangement.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Figure: The complete K_7 minus 1 seating arrangement.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Figure: The second seating arrangement.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Figure: The third seating arrangement.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The Oberwolfach problem-general case

The setting: Consider a conference with $n = 2k + 1$ participants. The organizing committee decides to host k banquets. The banquet hall has α round tables that sit $m_1, m_2, \ldots, m_\alpha$ participants, respectively, such that $m_1 + m_2 + \cdots + m_n = n$ and each $m_i \geqslant 3$.

The problem: The organizing committee needs a set of k seating arrangements (one for each banquet) such that each participant is seated beside every other participants exactly once.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Is this possible?

Terminology

Definition

A decomposition of a graph G is a set of subgraphs $\{H_1, H_2, \ldots, H_k\}$ such that each edge of G appears in exactly one subgraph. We then write $G = H_1 \oplus H_2 \oplus \cdots \oplus H_k$.

KORKAR KERKER SAGA

Figure: A decomposition of K_7 into copies of C_7 . We see that $K_7 = C_7 \oplus C_7 \oplus C_7$.

Terminology

Definition

A $[m_1, m_2, \ldots, m_\alpha]$ -factor of G is a spanning subgraph of G comprised to α disjoint cycles of lengths $m_1, m_2, \ldots, m_\alpha$.

Figure: A [3, 4]-factor of K_7 .

Terminology

Definition

A $[m_1, m_2, \ldots, m_\alpha]$ -factorization of G is a decomposition of G into $[m_1, m_2, \ldots, m_\alpha]$ -factors.

Figure: A [3, 4]-factorization of K_7 .

The graph-theoretic formulation of the OP

Problem

Let $n = 2k + 1$ and $m_1 + m_2 + \cdots + m_\alpha = n$. Does the graph K_n admit a $[m_1, m_2, \ldots, m_\alpha]$ -factorization?

The generalized Oberwolfach problem

What if $n = 2k$?

Figure: The complete graph on 8 vertices, K_8 .

The generalized Oberwolfach problem

What if $n = 2k$?

Figure: A 1-factor (perfect matching) of K_8 drawn in grey.

The generalized Oberwolfach problem

What if $n = 2k$?

Figure: The graph $K_8 - I$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

The graph-theoretic formulation of the OP

Problem $(\overline{\text{OP}}(m_1, m_2, \ldots, m_\alpha))$

Let $m_1 + m_2 + \cdots + m_\alpha = n$. If n is odd, does the graph K_n admit a $[m_1, m_2, \ldots, m_\alpha]$ -factorization? If *n* is even, does the graph $K_n - I$ admit a $[m_1, m_2, \ldots, m_\alpha]$ -factorization?

KORKARYKERKER POLO

If $m_1 = m_2 = \cdots = m_\alpha = m$, then we write OP(m^α).

Hamiltonian decomposition of K_n

Theorem (Walecki (1892))

The $OP(n)$ has a solution for all n.

This is a decomposition of K_n or $K_n - I$ into C_n which is also known as a Hamiltonian decomposition.

The Oberwolfach problem with tables of length m

Theorem (Jiaxi (1961), Ray-Chaudhuri and Wilson (1973), Kotzig and Rosa (1974), Baker and Wilson (1977), Brouwer (1978), Rees and Stinson (1987))

The OP(3^{α}) has a solution if and only if $\alpha \notin \{2,4\}$

Theorem (Walecki (1892), Alspach and Häggkvist (1985), Alspach et al. (1989), Hoffman and Schellenberg (1991))

YO A 4 4 4 4 5 A 4 5 A 4 D + 4 D + 4 D + 4 D + 4 D + 4 D + + E + + D + + E + + O + O + + + + + + + +

If $m \geq 4$, then $OP(m^{\alpha})$ has a solution.

The Oberwolfach problem with tables of varying lengths

Theorem (Hağgkvist (1985), Bryant and Danziger (2010))

The OP($m_1, m_2, \ldots, m_\alpha$) has a solution when $m_1, m_2, \ldots, m_\alpha$ are all even.

Theorem (Gvozdjak (2004) and Traetta (2013))

The OP(m_1, m_2) has a solution if and only if $(m_1, m_2) \notin \{(3, 3), (4, 5)\}.$

Theorem (Traetta (2024))

The OP($m_1, m_2, \ldots, m_\alpha$) when one of $m_1, m_2, \ldots, m_\alpha$ is sufficiently greater than an explicit lower bound.

The Oberwolfach problem with tables of varying lengths

Theorem (Bryant and Scharaschkin (2009))

The OP($m_1, m_2, \ldots, m_\alpha$) has a solution for infinitely many primes $n \equiv 1 \ (mod 16)$.

Theorem (Alspach et al. (2016))

The OP($m_1, m_2, \ldots, m_\alpha$) has a solution when $n = 2p$ where p is prime and $p \equiv 5 \pmod{8}$.

KORKAR KERKER SAGA

Computational results

Theorem (P. Adams and D. Bryant (2006); A. Deza et al. (2010), F. Franek et al. (2004); F. Franek and A. Rosa.(2006); F. Salassa et al. (2021); M. Meszka (2024))

The OP($m_1, m_2, \ldots, m_\alpha$) has a solution for $n \leq 100$ except for $OP(3^2)$, $OP(3^4)$, $OP(4, 5)$, and $OP(3, 3, 5)$.

KORKAR KERKER DRAM

Probabilistic approach

Theorem (Glock et al. (2021))

The OP($m_1, m_2, \ldots, m_\alpha$) has a solution for n sufficiently large.

The directed Oberwolfach problem

The setting: Consider a conference with *n* participants. To facilitate networking, the organizing committee decides to host $n-1$ banquets. The banquet hall has α round tables that sit $m_1, m_2, \ldots, m_\alpha$ participants such that $m_1 + m_2 + \cdots + m_\alpha = n$.

The problem: The organizing committee needs a set of $n - 1$ seating arrangements (one for each banquet) such that each participant is seated to the right of every other participants exactly once.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Is this possible?

A simple example

A simple example

Figure: One seating arrangement with one table of length 4 and one table of length 8.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

A simple example

Figure: One seating arrangement with one table of length 4 and one table of length 8.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on n vertices in which for every pair of distinct vertices x and y , there are arcs (x, y) and (y, x) .

Figure: The complete graph K_4 .

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on n vertices in which for every pair of distinct vertices x and y , there are arcs (x, y) and (y, x) .

Figure: The complete symmetric digraph K_4^* .

Cycle decomposition

Definition

A \vec{C}_m -factor of digraph G is a spanning subdigraph of G that is the disjoint union of directed m-cycles.

Figure: A \vec{C}_5 -factor of K_{10}^* .

KORKAR KERKER ST VOOR

Cycle decomposition

Definition

A \vec{C}_m -factor of digraph G is a spanning subdigraph of G that is the disjoint union of directed m-cycles.

KORKAR KERKER SAGA

Definition

A \vec{C}_m -factorization of G is a decomposition of G into $\vec{\mathcal{C}}_{m}$ -factors.

$[m_1, m_2, \ldots, m_\alpha]$ -factorization

Definition

A directed $[m_1, m_2, \ldots, m_\alpha]$ -factor of digraph G is a spanning subdigraph comprised of disjoint directed cycles of length $m_1, m_2, \ldots, m_\alpha$.

Definition

A directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization of digraph G is a decomposition of G into $[m_1, m_2, \ldots, m_\alpha]$ -factors.

KORKAR KERKER ST VOOR

The graph-theoretic formulation of the directed OP

Problem $(\mathsf{OP}^*(m_1, m_2, \ldots, m_\alpha))$

Let $m_1, m_2, \ldots, m_\alpha \geqslant 2$. If $m_1 + m_2 + \cdots + m_\alpha = n$, does K_n^* admit a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization?

Why are we not considering two different cases based on the parity of n ?

Figure: The complete graph K_4 .

The graph-theoretic formulation of the directed OP

Problem $(\mathsf{OP}^*(m_1, m_2, \ldots, m_\alpha))$

Let $m_1, m_2, \ldots, m_\alpha \geqslant 2$. If $m_1 + m_2 + \cdots + m_\alpha = n$, does K_n^* admit a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization?

Why are we not considering two different cases based on the parity of n ?

Figure: The complete symmetric digraph K_4^* .

Easy consequences

Corollary (Kadri and Šajna $(2024+)$)

If $(m_1, m_2, \ldots, m_\alpha) \not\in \{(4, 5), (3, 3, 5)\}\$, then $OP^*(m_1, m_2, \ldots, m_\alpha)$ has a solution in each of the following cases:

$$
m_1 = m_2 = \cdots = m_t;
$$

$$
\blacksquare \, n \leqslant 100;
$$

$$
t=2.
$$

We generally consider the case n is even because, when n is odd, a solution to the directed OP can be obtained by orienting a solution to the original OP.

KORKAR KERKER ST VOOR

Directed Oberwolfach problem with tables of uniform length

Problem (The directed Oberwolfach problem with tables of uniform length)

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

To find all integers α and m for which $K_{\alpha m}^*$ admits a $\vec{\mathcal{C}}_{m}$ -factorization.

Observe that α =number of cycles in a $\vec{\mathcal{C}}_{m}$ -factor.
Previous results (small *m* or α)

The digraph $\mathcal{K}^*_{\alpha m}$ admits a $\vec{\mathcal{C}}_m$ -factorization when:

- $m = 3$ and $\alpha \neq 2$ (Bermond et al. (1979));
- $\alpha = 1$ and $m \notin \{4, 6\}$ (Tillson (1980));
- $m = 4$ and $\alpha \neq 1$ (Bennett and Zhang (1990); Adams and Bryant, Unpublished);

KORKAR KERKER ST VOOR

• $m = 5$ and $\alpha \geqslant 103$ (Abel et al. (2002)).

Previous results (general m)

Theorem (Burgess and Šajna, 2014)

If m is even or α is odd, such that $(\alpha, m) \notin \{(1,6), (1,4)\}$, then $K_{\alpha m}^*$ admits a \vec{C}_m -factorization.

We have a solution when tables are of even length or when we have an odd number of tables.

KORKAR KERKER ST VOOR

Previous results (general m)

What if we have an even number of tables of odd length?

Theorem (Burgess and Šajna, 2014)

Suppose that α is an even integer and $m \geqslant 3$ is an odd integer. If \mathcal{K}_{2m}^* admits a $\vec{\mathcal{C}}_m$ -factorization, then $\mathcal{K}_{\alpha m}^*$ also admits a \dot{C}_{m} -factorization.

It suffices to solve our problem when we have seating arrangements with two tables of odd length.

KORKAR KERKER SAGA

Previous results (general *m*)

Conjecture (Burgess and Šajna, 2014)

If m is odd and m \geqslant 5, then K^*_{2m} admits a $\vec{\mathsf{C}}_m$ -factorization.

Theorem (Burgess, Francetić, and Šajna, 2018)

If m is odd and $5\leqslant m\leqslant 49$, then K_{2m}^* admits a $\vec{\mathcal{C}}_m$ -factorization.

KORKAR KERKER DRAM

New Result

Theorem (L-M, 2024)

The digraph K_{2m}^* admits a \vec{C}_m -factorization for all odd $m \geqslant 11$.

KELK KØLK VELKEN EL 1990

Tools

Lemma (Burgess and Šajna, 2014)

Let $\{G_1, G_2, \ldots, G_t\}$ be a decomposition of H into spanning subdigraphs. If each G_i admits a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization, then H admits a directed $[m_1, m_2, \ldots, m_\alpha]$ -factorization.

Proof Let D_i be the $[m_1, m_2, \ldots, m_\alpha]$ -factorization of G_i . We see that

$$
\mathcal{F} = \bigcup_{i=1}^t D_i
$$

KORKAR KERKER SAGA

is a $[m_1, m_2, \ldots, m_\alpha]$ -factorization of H. \square

Step 1: Strategically decompose $\left(\frac{di}{gr} \right)$ G into t spanning $\mathsf{sub}(\mathsf{di})$ graphs that fall into r isomorphisms classes: $\,H_1,H_2,\ldots,H_r.$

KORKAR KERKER SAGA

Step 2: Show that each isomorphism class admits the desired $[m_1, m_2, \ldots, m_\alpha]$ -factorization.

Häggkvist style constructions

Theorem (Hağgkvist (1985))

The OP($m_1, m_2, \ldots, m_\alpha$) has a solution when $m_1, m_2, \ldots, m_\alpha$ are all even and $n \equiv 2 \pmod{4}$.

Häggkvist style constructions

Lemma (Häggkvist (1985))

If m is odd, $K_{2m} - I$ admits a decomposition into $\frac{m-1}{2}$ copies of $C_m \wr \overline{K}_2$.

KORKARYKERKER POLO

Häggkvist style constructions

Lemma (Häggkvist (1985))

If m is odd, $K_{2m} - I$ admits a decomposition into $\frac{m-1}{2}$ copies of $C_m \wr \overline{K}_2$.

Proof: We know that K_m admits a decomposition into $\frac{m-1}{2}$ copies of C_m when m is odd.

We also know that $K_{2m} - I = K_m \wr \overline{K}_2$.

$$
K_m \wr \overline{K}_2 = (C_m \oplus C_m \oplus \cdots \oplus C_m) \wr \overline{K}_2
$$

=
$$
C_m \wr \overline{K}_2 \oplus C_m \wr \overline{K}_2 \oplus \cdots \oplus C_m \wr \overline{K}_2.
$$

□

KORKAR KERKER ST VOOR

Lemma (Häggkvist Lemma (1985))

Let $m_1, m_2, \ldots, m_\alpha$ be even integers greater than 2 such that $m_1 + m_2 + \cdots + m_\alpha = 2m$. The graph $C_m \wr \overline{K}_2$ admits a $[m_1, m_2, \ldots, m_\alpha]$ -factorization for all $m \geq 2$.

KORK EXTERNE PROVIDE

Lemma (Häggkvist Lemma (1985))

Let $m_1, m_2, \ldots, m_\alpha$ be even integers greater than 2 such that $m_1 + m_2 + \cdots + m_\alpha = 2m$. The graph $C_m \wr \overline{K}_2$ admits a $[m_1, m_2, \ldots, m_\alpha]$ -factorization for all $m \geq 2$.

Figure: A [4, 10]-factor of $C_m \wr \overline{K}_2$.

KORK EXTERNE PROVIDE

Lemma (Häggkvist Lemma (1985))

Let $m_1, m_2, \ldots, m_\alpha$ be even integers greater than 2 such that $m_1 + m_2 + \cdots + m_\alpha = 2m$. The graph $C_m \wr \overline{K}_2$ admits a $[m_1, m_2, \ldots, m_\alpha]$ -factorization for all $m \geq 2$.

KORK EXTERNE PROVIDE

Step 1: Decompose \mathcal{K}^*_{2m} into $\frac{m-1}{2}$ spanning subdigraphs that fall into one of three isomorphisms classes: G_1 , G_2 , and G_3 .

KORKAR KERKER SAGA

Step 2: Show that G_1 , G_2 , and G_3 admit a \vec{C}_m -factorization.

Decomposition of K_2^* 2m

Figure: The spanning digraph $G_1 = \vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$.

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

 (b)

KORK EXTERNE PROVIDE

Figure: A \vec{C}_m -factorization of G_1 .

Result

Proposition

Let $m \geq 3$ be an odd integer. The digraph $\vec{X}(\{\pm 1\}, m) \wr \vec{K}_2$ admits a \vec{C}_m -factorization.

KELK KØLK VELKEN EL 1990

Decomposition of K_2^* 2m

Figure: The spanning digraph $\mathcal{G}_2 = \vec{X}(\{1,3\},13) \wr \overline{K}_2$ of $\mathcal{K}^*_{2(13)}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Key ingredients

Figure: A \vec{C}_{13} -factorization of $\vec{X}(\{1,3\}, m)$ when $m = 13$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Key ingredients

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Key ingredients

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익(연

Result

Proposition

Let $m \geq 3$ be an odd integer. The digraph $\vec{X}(\{\pm 1\}, m) \wr \vec{K}_2$ admits a \vec{C}_m -factorization.

Proposition

Let $m \geq 11$ be an odd integer. The digraph $\vec{X}(\{1,3\}, m) \wr \vec{K}_2$ admits a \vec{C}_m -factorization if and only if $m \not\equiv 3 \pmod{6}$.

KORKAR KERKER DRAM

Decomposition of K_2^* 2m

Figure: The spanning digraph $G_3 = \vec{X}(\{1,3\}, 13) \wr K_2^*$ of $K_{2(13)}^*$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Figure: A \vec{C}_{25} -factor of G_3 when $m = 25$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Result

Proposition

Let $m \geq 3$ be an odd integer. The digraph $\vec{X}(\{\pm 1\}, m) \wr \vec{K_2}$ admits a \vec{C}_m -factorization.

Proposition

Let $m \geq 11$ be an odd integer. The digraph $\vec{X}(\{1,3\}, m) \wr \vec{K_2}$ admits a \vec{C}_m -factorization if and only if $m \not\equiv 3 \pmod{6}$.

Proposition

Let $m \geqslant 11$ be an odd integer such that $m \equiv 1, 5 \ (mod \ 6)$. The digraph $\vec{\mathcal{X}}(\{1,3\},m)$ ≀ \mathcal{K}_2^* admits a $\vec{\mathcal{C}}_m$ -factorization.

Summary

Proposition

The digraph
$$
K_{2m}^*
$$
 admits a decomposition into
\n**1** $\frac{m-5}{2}$ copies of $\vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$;
\n**2** one copy of $\vec{X}(\{1,3\}, m) \wr \overline{K}_2$;
\n**3** one copy of $\vec{X}(\{1,3\}, m) \wr K_2^*$.

Theorem (L-M, (2024))

If $m \equiv 1, 5 \pmod{6}$ and $m \geqslant 11$ then K_{2m}^* admits a \vec{C}_m -factorization.

KELK KØLK VELKEN EL 1990

Reduction step

Proposition

If K^*_{2m} admits a $\vec{\mathcal{C}}_m$ -factorization, then $\mathsf{K}^*_{2(3^tm)}$ admits a $\vec{\mathsf{C}}_{3^tm}$ -factorization where t is a positive integer.

KELK KØLK VELKEN EL 1990

If
$$
m' \equiv 3 \pmod{6}
$$
 then:

$$
m' = 3^t \cdot m
$$
 where $m \equiv 1, 5 \pmod{6}$.

Reduction step

Proposition

If K^*_{2m} admits a $\vec{\mathcal{C}}_m$ -factorization, then $\mathsf{K}^*_{2(3^tm)}$ admits a \vec{C}_{3^tm} -factorization where t is a positive integer.

If $m' \equiv 3 \pmod{6}$ then:

 $m' = 3^t \cdot m$ where $m \equiv 1, 5 \pmod{6}$.

When $m \equiv 1, 5 \pmod{6}$ and $m \ge 5$, we obtain a $\vec{\mathcal{C}}_{m'}$ -factorization of $K^*_{2m'}$ using a $\vec{\mathcal{C}}_m$ -factorization of K^*_{2m} .

KORKAR KERKER SAGA

When $m=1$, we use a $\vec{\mathcal{C}}_9$ -factorization of \mathcal{K}^*_{18} .

Main result

Theorem (L-M, (2024))

The digraph K_{2m}^* admits a \vec{C}_m -factorization for all odd $m \geqslant 11$.

KELK KØLK VELKEN EL 1990

A complete solution

Theorem

The digraph $K_{\alpha m}^*$ admits \vec{C}_m -factorization if and only if $(\alpha, m) \notin \{(1, 6), (2, 3), (1, 4)\}.$

The theorem above is a result of the work of: Bermond and Faber (1976); Bermond, Germa, and Sotteau (1979); Tillson (1980); Bennett and Zhang (1990); Adams and Bryant (Unpublished); Abel, Bennett, and Ge (2002) ; Burgess and Šajna (2014) ; Burgess, Francetić, and Šajna (2018); L-M (2024).

KORKAR KERKER ST VOOR

The directed Oberwolfach problem with tables of varying lengths

Using a recursive approach, Kadri and Šajna $(2024+)$ obtain several infinite families of solution to $\mathsf{OP}^*(m_1,m_2,\ldots,m_\alpha).$

Furthermore, they establish the existence of solutions for $n \leq 14$ except for three already known exceptions.

Theorem (Kadri and Šajna $(2024+)$

The $OP^*(m_1, m_2, \ldots, m_\alpha)$ has a solution for $n \leq 14$ except for $OP^*(4^1), OP^*(6^1), OP^*(3^2).$

KORKAR KERKER SAGA

A key corollary

Theorem (Kadri and Šajna $(2024+)$)

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution except possibly when $m_1 \in \{4, 6\}$ and m_2 is even.

Idea: Take a solution to $\mathsf{OP}^*(m_1^1)$ and construct a solution to $OP^*(m_1, m_2)$. **Problem:** $OP^*(4^1)$ and $OP^*(6^1)$ do not have a solution (Bermond and Faber (1976)).

KORKAR KERKER SAGA

Result on two tables

Theorem (Horsley and L-M $(2024+)$)

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution when $m_1 \in \{4, 6\}$ and $m₂$ is even.

We construct an $[m_1, m_2]$ -factorization of K_n^* when $m_1 + m_2 = n$, $m_1 \in \{4, 6\}$, and m_2 is even.

KORKARYKERKER POLO

Step 1: Decompose \mathcal{K}_{2m}^* into $\frac{m-1}{2}$ spanning subdigraphs that fall into one two isomorphisms classes: G_1 and G_2 .

Step 2: Show that G_1 and G_2 both admit a $[m_1, m_2]$ -factorization.

KORKAR KERKER SAGA

The first class of digraphs

Figure: The spanning digraph $G_1 = \vec{X}(\{\pm 1\}, m) \wr \overline{K}_2$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The second class of digraph

KORKARYKERKER POLO

Each edge represents a pair of arcs, one for each direction.
A complete solution

Theorem (Kadri and Šajna $(2024+)$ and Horsley and L-M $(2024+)$

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution.

We have a complete solution to the directed Oberwolfach problem with two tables.

KORKARYKERKER OQO

Next step: To generalize our methods to obtain a solution to $\mathsf{OP}^*(m_1,m_2,\ldots,m_\alpha)$ for any even integers m_1,m_2,\ldots,m_α and $n \equiv 0, 2 \pmod{4}$.

KO KA KO KE KA E KA KA KA KA KA KA KA KA A

Thanks!

